Preparation and Characterization of Wurtzitic Gan Single Crystals in Nano and Micro Scale

1996 ◽  
Vol 423 ◽  
Author(s):  
San Yu ◽  
Hongdong Li ◽  
Haibin Yang ◽  
Dongmei Li ◽  
Haiping Sun ◽  
...  

AbstractGallium nitride and its alloys are the most promising materials for short wave light emitters. If high quality GaN single crystals can be prepared, the GaN base light emitters should be fabricated directly on the lattice-matched GaN substrate.In this work, GaN crystals in nano and micro scale with definite faces have been prepared by dc arc discharge using gallium and N2+NH3 as starting materials. Transmission electron microscope, selected area diffraction, x-ray microanalysis of energy dispersive spectroscopy, and x-ray diffraction investigation of the as grown GaN crystals show that the well faceted crystals are single crystalline GaN in wurtzite structure having lattice constants a0=3.18Å and c0=5.18Å. The crystal size of stoichoimetric GaN in wurtzite structure depends on the partial pressure of nitrogen in the plasma. The maximum crystal size in this work is about several micrometers.

2006 ◽  
Vol 963 ◽  
Author(s):  
Seonoh Hwang ◽  
Jinyoung Lee ◽  
Hyunju Lee ◽  
Sangwon Yoon ◽  
Jeunghee Park

ABSTRACTNovel Mn-incorporated ZnSe and CdSe 1-dimensionl nanostructures; straight nanowires, zigzagged nanobelts, and nanohooks, were first synthesized using chemical vapor deposition method. The Mn content reaches up to 40%. They all consisted of single-crystalline wurtzite structure for all Mn content. The structure has been thoroughly investigated by high-resolution transmission electron microscopy images as well as energy-dispersive X-ray fluorescence spectroscopy. The X-ray diffraction pattern confirms the formation of the wurtzite structure, even for 40% Mn incorporation. The lattice constants of Mn-doped ZnSe and CdSe 1-D nanostructures are expanded and reduced, respectively, by the Mn doping. The Mn2+ emission at 2.1 eV, originating from the d-d (4T1 → 6A1) transition, confirms the effective paramagnetic Mn2+ doping at tetrahedral coordinate sites. These Mn-incorporated nanostructures exhibit a paramagnetic behavior.


2005 ◽  
Vol 38 (5) ◽  
pp. 749-756 ◽  
Author(s):  
Ulrich Gesenhues

The polygonization of 200 nm rutile crystals during dry ball-milling at 10gwas monitored in detail by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The TEM results showed how to modify the Williamson–Hall method for a successful evaluation of crystal size and microstrain from XRD profiles. Macrostrain development was determined from the minute shift of the most intense reflection. In addition, changes in pycnometrical density were monitored. Accordingly, the primary crystal is disintegrated during milling into a mosaic of 12–35 nm pieces where the grain boundaries induce up to 1.2% microstrain in a lower layer of 6 nm thickness. Macrostrain in the interior of the crystals rises to 0.03%. The pycnometrical density, reflecting the packing density of atoms in the grain boundary, decreases steadily by 1.1%. The results bear relevance to our understanding of plastic flow and the mechanism of phase transitions of metal oxides during high-energy milling.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Alaa Mohamed ◽  
T. A. Osman ◽  
A. Khattab ◽  
M. Zaki

Carbon nanotubes (CNTs) with 10 nm average diameter and 5 μm in length were synthesized by electric arc discharge. The morphology and structure of CNTs were characterized by high resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. The tribological properties of CNTs as an additive on lithium grease were evaluated with a four ball tester. The results show that the grease with CNTs exhibit good performance in antiwear (AW) and decrease the wear scare diameter (WSD) about 63%, decrease friction reduction about 81.5%, and increase the extreme pressure (EP) properties and load carrying capacity about 52% with only 1% wt. of CNTs added to lithium grease. The action mechanism was estimated through analysis of the worn surface with a scanning electron microscope (SEM) and energy dispersive X-ray (EDX). The results indicate that a boundary film mainly composed of CNTs, Cr, iron oxide, and other organic compounds was formed on the worn surface during the friction process.


1997 ◽  
Vol 12 (6) ◽  
pp. 1472-1480 ◽  
Author(s):  
Katherine C. Chen ◽  
Samuel M. Allen ◽  
James D. Livingston

Microstructures of two-phase Ti–Cr alloys (Ti-rich bcc + TiCr2 and Cr-rich bcc + TiCr2) are analyzed. A variety of TiCr2 precipitate morphologies is encountered with different nominal alloy compositions and annealing temperatures. Lattice constants and crystal structures are determined by x-ray diffraction (XRD) and transmission electron microscopy (TEM). Orientation relationships between the beta bcc solid solution and C15 TiCr2 Laves phase are understood in terms of geometrical packing, and are consistent with a Laves phase growth mechanism involving twinning.


1996 ◽  
Vol 51 (10) ◽  
pp. 1407-1410 ◽  
Author(s):  
B. Wedel ◽  
Hk. Müller-Buschbaum

Single crystals of Ba2Nb2TeO10) have been prepared by solid state reactions in air. X-ray investigations led to orthorhombic symmetry, space group D152h-Pbca, a = 7.242(4), b = 12.433(3), c = 9.932(3) Å. Z = 4. Nb5+ and Te6+ show octahedral coordination by O2- . The crystal structure is characterized by planes of edge- and corner-sharing NbO6- and TeO6octahedra. It is shown that in spite of nearly identical lattice constants of Ba2Nb2TeO10 with compounds of the composition M0,5BaNbTe2O9 the so far unknown crystals of these substances may not be derived from the Ba2Nb2TeO10 type.


2012 ◽  
Vol 717-720 ◽  
pp. 493-496
Author(s):  
Deborah Dompoint ◽  
Irina G. Galben-Sandulache ◽  
Alexandre Boulle ◽  
Didier Chaussende ◽  
Dominique Eyidi ◽  
...  

The 3C-6H polytypic transition in 3C-SiC single crystals is studied by means of diffuse X-ray scattering (DXS) coupled with transmission electron microscopy (TEM). TEM reveals that the partially transformed SiC crystals contain regions of significantly transformed SiC (characterized by a high density of stacking faults) co-existing with regions of pure 3C-SiC. The simulation of the diffuse intensity allows to determine both the volume fraction of transformed material and the transformation level within these regions. It is further shown that the evolution with time and temperature of the transition implies the multiplication and glide of partial dislocations, the kinetics of which are quantified by means of DXS.


2009 ◽  
Vol 64 (8) ◽  
pp. 922-928 ◽  
Author(s):  
Manuel Christian Schaloske ◽  
Hansjürgen Mattausch ◽  
Viola Duppel ◽  
Lorenz Kienle ◽  
Arndt Simon

The compounds Pr6(C2)Br10, Pr10(C2)2Br15 and Pr14(C2)3Br20 were prepared from PrBr3 and the appropriate amounts of Pr and C and characterized by X-ray structure analyses of single crystals. All three compounds crystallize in space group P1 with lattice parameters a = 7.571(2), b = 9.004(2), c = 9.062(2) Å ,α = 108.57(3), β = 97.77(3), γ = 106.28(3)◦ for Pr6(C2)Br10; a = 9.098(2), b = 10.127(2), c = 10.965(2) A° , α = 70.38(3), β = 66.31(3), γ = 70.84(3)◦ for Pr10(C2)2Br15; a = 9.054(2), b = 10.935(2), c = 13.352(3) Å , α = 86.27(3), β = 72.57(3), γ = 66.88(3)◦ for Pr14(C2)3Br20. They are members of a general series Ln4n+2(C2)nBr5n+5 and isostructural with the corresponding iodides known for Ln = La, Ce, Pr. Pr6(C2)Br10 was further characterized via transmission electron microscopy techniques


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


1999 ◽  
Vol 14 (5) ◽  
pp. 1782-1790 ◽  
Author(s):  
X. L. Dong ◽  
Z. D. Zhang ◽  
S. R. Jin ◽  
W. M. Sun ◽  
X. G. Zhao ◽  
...  

Ultrafine Fe–Ni(C) particles of various compositions were prepared by arc discharge synthesis in a methane atmosphere. The particles were characterized by x-ray diffraction, transmission electron microscopy, energy disperse spectroscopy, chemical analysis, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and magnetization measurement. The carbon atoms solubilizing at interstitial sites in γ–(Fe, Ni, C) solution particles have the effects of forming austenite structure and changing microstructures as well as magnetic properties. A carbon layer covers the surface of Fe–Ni(C) particles to form the nanocapsules and protect them from oxidization. The mechanism of forming Fe–Ni(C) nanocapsules in the methane atmosphere was analyzed.


Sign in / Sign up

Export Citation Format

Share Document