Real-Time Monitoring of Hydrogen Elimination Processes in Pulsed-Gas PECVD Using in Situ Mass Spectroscopy

1996 ◽  
Vol 452 ◽  
Author(s):  
Easwar Srinivasan ◽  
Jeremy S. Bordeaux ◽  
Gregory N. Parsons

AbstractIn situ mass spectroscopy is used to monitor and analyze the hydrogen elimination reaction products during cyclical exposure of thin films of amorphous silicon to a flux of atomic deuterium. Mass spectroscopy results that atomic deuterium etches deposited silicon forming SiD4 and abstracts hydrogen bonded to silicon in the film to form HD. The relative signal intensities show that abstraction is the primary hydrogen elimination mechanism. The energy of activation for the abstraction reaction is obtained from the mass spectroscopy signals through a first order kinetic analysis and is found to be approximately zero, indicating that abstraction is not thermally activated.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yujiao Sun ◽  
Fachao Wu ◽  
Minjian Shi ◽  
Xurui Liu

Antibiotic residues and antibiotic resistance genes (ARGs) pose a great threat to public health and food security via the horizontal transfer in the food production chain. Oxidative degradation of amoxicillin (AMO) in aqueous solution by thermally activated persulfate (TAP) was investigated. The AMO degradation followed a pseudo-first-order kinetic model at all tested conditions. The pseudo-first-order rate constants of AMO degradation well-fitted the Arrhenius equation when the reaction temperature ranged from 35°C to 60°C, with the apparent activate energy of 126.9 kJ·mol−1. High reaction temperature, high initial persulfate concentration, low pH, high Cl− concentration, and humic acid (HA) concentration increased the AMO degradation efficiency. The EPR test demonstrated that both ·OH and SO4·− were generated in the TAP system, and the radical scavenging test identified that the predominant reactive radical species were SO4·− in aqueous solution without adjusting the solution pH. In groundwater and drinking water, AMO degradation suggested that TAP could be a reliable technology for water remediation contaminated by AMO in practice.


2014 ◽  
Vol 675-677 ◽  
pp. 547-550
Author(s):  
Jun Jie Yue ◽  
Xiao Qiao Zhu ◽  
Yu Ting Wang ◽  
Yu Qin Zhang ◽  
Li Zhao ◽  
...  

In situ chemical oxidation with persulfate (PS) anion (S2O82-) is a viable technique for remediation of groundwater contaminants such as trichloroethylene (TCE). This laboratory study investigated the use of the oxidant sodium PS for the chemical oxidation of TCE at different conditions to determine the influence of temperature, pH, and the PS/TCE molar ratio. Experiments revealed that higher temperatures, lower pH, and higher PS/TCE molar ratios were to the benefit of TCE oxidation by PS. By investigating the reaction kinetics, the degradations of contaminant can be described by use of pseudo-first-order reaction. At the temperatures ranging from 25°C to 40°C, the activation energy for the degradation of TCE was determined to be 85.04 KJ/mol.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3049
Author(s):  
Imran Hasan ◽  
Charu Shekhar ◽  
Walaa Alharbi ◽  
Maymonah Abu Khanjer ◽  
Rais Ahmad Khan ◽  
...  

Herein, we report PAN-g-Alg@Ag-based nanocatalysts synthesis via in situ oxidative free-radical polymerization of acrylonitrile (AN) using Alg@Ag nanoparticles (Alg@Ag NPs). Various analytical techniques, including FTIR, XRD, SEM, TEM, UV–Vis, and DSC, were employed to determine bonding interactions and chemical characteristics of the nanocatalyst. The optimized response surface methodology coupled central composite design (RSM–CCD) reaction conditions were a 35-min irradiation time in a 70-mg L−1 2,4-dinitrophenol (DNP) solution at pH of 4.68. Here, DNP degradation was 99.46% at a desirability of 1.00. The pseudo-first-order rate constant (K1) values were 0.047, 0.050, 0.054, 0.056, 0.059, and 0.064 min−1 with associated half-life (t1/2) values of 14.74, 13.86, 12.84, 12.38, 11.74, 10.82, and 10.04 min that corresponded to DNP concentrations of 10, 20, 30, 40, 50, 60, and 70 mg L−1, respectively, in the presence of PAN-g-Alg@Ag (0.03 g). The results indicate that the reaction followed the pseudo-first-order kinetic model with an R2 value of 0.99. The combined absorption properties of PAN and Alg@Ag NPs on copolymerization on the surface contributed more charge density to surface plasmon resonance (SPR) in a way to degrade more and more molecules of DNP together with preventing the recombination of electron and hole pairs within the photocatalytic process.


1986 ◽  
Vol 64 (2) ◽  
pp. 311-313
Author(s):  
Anthony Martin Newton

In acetic acid – sodium acetate buffer of pH 5.6 (25 °C) the Co(NH3)5S2O3+ ion undergoes redox decomposition rather than aquation. First-order kinetic are observed and the reaction products Co2+, NH3, and S4O62− are due to internal reduction of Co(III) by coordinated S2O32−. In dilute perchloric acid of pH < 4 the rate is retarded, first-order plots are not linear, and S4O62− is not a major product of the reaction. It is proposed that, in dilute HClO4, protonation of Co(NH3)5S2O3+ depletes the concentration of the reactive complex and that decomposition of coordinated HS2O3− occurs. Conversion of O-bonded S2O32− to S-bonded S2O32− in the reactive complex is also considered.


2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


1976 ◽  
Vol 56 (2) ◽  
pp. 71-78 ◽  
Author(s):  
D. R. CAMERON ◽  
C. G. KOWALENKO

A small subsystem model was developed to simulate the major nitrogen flow pathways in an unsaturated soil treated with ammonium sulphate. A nonlinear Freundlich equilibrium model and a Langmuir kinetic model were used to describe mathematically the adsorption–desorption of soluble NH4+ to the exchangeable and clay-fixed phases, respectively. Time dependent, microbial mediated first-order kinetic models were used to quantify the ammonification and nitrification processes. The subsystem model was then used as a research tool to derive ammonification and nitrification rate coefficients for a preceding incubation experiment conducted using different soil moisture contents and temperatures. The model yields reasonably good fits to the observed data. A subsequent regression analysis relating the coefficients to temperature and moisture pointed out the importance of the temperature–water content interaction term in quantifying microbial mediated processes.


2007 ◽  
Vol 73 (8) ◽  
pp. 2468-2478 ◽  
Author(s):  
Bernadette Klotz ◽  
D. Leo Pyle ◽  
Bernard M. Mackey

ABSTRACT A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.


2018 ◽  
Vol 31 ◽  
pp. 03002 ◽  
Author(s):  
Hadiyanto Hadiyanto

Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.


Sign in / Sign up

Export Citation Format

Share Document