scholarly journals A Highly Efficient Ag Nanoparticle-Immobilized Alginate-g-Polyacrylonitrile Hybrid Photocatalyst for the Degradation of Nitrophenols

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3049
Author(s):  
Imran Hasan ◽  
Charu Shekhar ◽  
Walaa Alharbi ◽  
Maymonah Abu Khanjer ◽  
Rais Ahmad Khan ◽  
...  

Herein, we report PAN-g-Alg@Ag-based nanocatalysts synthesis via in situ oxidative free-radical polymerization of acrylonitrile (AN) using Alg@Ag nanoparticles (Alg@Ag NPs). Various analytical techniques, including FTIR, XRD, SEM, TEM, UV–Vis, and DSC, were employed to determine bonding interactions and chemical characteristics of the nanocatalyst. The optimized response surface methodology coupled central composite design (RSM–CCD) reaction conditions were a 35-min irradiation time in a 70-mg L−1 2,4-dinitrophenol (DNP) solution at pH of 4.68. Here, DNP degradation was 99.46% at a desirability of 1.00. The pseudo-first-order rate constant (K1) values were 0.047, 0.050, 0.054, 0.056, 0.059, and 0.064 min−1 with associated half-life (t1/2) values of 14.74, 13.86, 12.84, 12.38, 11.74, 10.82, and 10.04 min that corresponded to DNP concentrations of 10, 20, 30, 40, 50, 60, and 70 mg L−1, respectively, in the presence of PAN-g-Alg@Ag (0.03 g). The results indicate that the reaction followed the pseudo-first-order kinetic model with an R2 value of 0.99. The combined absorption properties of PAN and Alg@Ag NPs on copolymerization on the surface contributed more charge density to surface plasmon resonance (SPR) in a way to degrade more and more molecules of DNP together with preventing the recombination of electron and hole pairs within the photocatalytic process.

2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


2018 ◽  
Vol 38 ◽  
pp. 02014
Author(s):  
Yu Zhang ◽  
Jian Gu ◽  
Mengqi Zhang

The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of ~50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the “sum effect” between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Li Yu ◽  
Yongkui Huang ◽  
Yun Yang ◽  
Yulin Xu ◽  
Guohong Wang ◽  
...  

H4SiW6Mo6O40/SiO2was sensitized by H2O2solution that significantly improved its catalytic activity under simulated natural light. Degradation of basic fuchsin was used as a probe reaction to explore the influencing factors on the photodegradation reaction. The results showed that the optimal conditions were as follows: initial concentration of basic fuchsin 8 mg/L, pH 2.5, catalyst dosage 4 g/L, and light irradiation time 4 h. Under these conditions, the degradation rate of basic fuchsin is 98%. The reaction of photocatalysis for basic fuchsin can be expressed as the first-order kinetic model. After being used continuously for four times, the catalyst kept the inherent photocatalytic activity for degradation of dyes. The photodegradation of malachite green, methyl orange, methylene blue, and rhodamine B were also tested, and the degradation rate of dyes can reach 90%–98%.


1993 ◽  
Vol 296 (1) ◽  
pp. 79-84 ◽  
Author(s):  
U Bandyopadhyay ◽  
D K Bhattacharyya ◽  
R K Banerjee

The mechanism of inhibition of gastric peroxidase (GPO) activity by mercaptomethylimidazole (MMI), an inducer of gastric acid secretion, has been investigated. Incubation of purified GPO with MMI in the presence of H2O2 results in irreversible inactivation of the enzyme. No significant inactivation occurs in the absence of H2O2 or MMI, suggesting the involvement of peroxidase-catalysed oxidized MMI (MMIOX.) in the inactivation process. The inactivation follows pseudo-first-order kinetics consistent with a mechanism-based (suicide) mode. The pseudo-first-order kinetic constants at pH 8 are ki = 111 microM, k(inact.) = 0.55 min-1 and t1/2 = 1.25 min, and the second-order rate constant is 0.53 x 10(4) M-1 x min-1. Propylthiouracil also inactivates GPO activity in the same manner but its efficiency (k(inact./ki = 0.46 mM-1 x min-1) is about 10 times lower than that of MMI (k(inact./ki = 5 mM-1 x min-1). The rate of inactivation with MMI shows pH-dependence with an inflection point at 7.3, indicating the involvement in the inactivation process of an ionizable group on the enzyme with a pKa of 7.3. The enzyme is remarkably protected against inactivation by micromolar concentrations of electron donors such as iodide and bromide but not by chloride. Although GPO oxidizes MMI slowly, iodide stimulates it through enzymic generation of I+ which is reduced back to I- by MMI. Although MMIOX. is formed at a much higher rate in the presence of I-, a constant concentration of I- maintained via the reduction of I+ by MMI, protects the active site of the enzyme against inactivation. We suggest that MMI inactivates catalytically active GPO by acting as a suicidal substrate.


2015 ◽  
Vol 71 (11) ◽  
pp. 1694-1700 ◽  
Author(s):  
ZiFang Chen ◽  
YongSheng Zhao ◽  
Qin Li

Gallic acid (GA) is a naturally occurring plant polyphenol compound. Experiments were conducted to study the kinetics and effects of pH, temperature, irradiation, and initial hexavalent chromium (Cr(VI)) concentration on Cr(VI) reduction by GA. Results indicated that Cr(VI) could be reduced to chromium oxide (Cr(III)) with GA in a wide range of pH values from 2.0 to 8.5. The reaction followed a pseudo-first-order kinetic model with respect to Cr(VI) and GA in acid conditions (pH 2.0–5.0). However, the reaction did not follow the pseudo-first-order kinetic model at pH 6.5 and 8.5. Removal efficiencies and reaction rate constants of Cr(VI) significantly increased with decreasing pH value and increasing temperature. The effect of irradiation on Cr(VI) reduction increased with increasing pH, and irradiation improved the removal efficiency of Cr(VI) by 11.29% at pH 6.5. At pH 2.0, nearly all molar ratios of GA required for the reduction of Cr(VI) were 1:2 (±0.1) under different initial Cr(VI) concentrations; however, the molar ratios of GA required for the reduction of Cr(VI) were 1:1.29, 1:1.43, and 1:1.69, respectively, when the initial Cr(VI) concentrations were 10, 25, and 50 mg/L at pH 5.5.


2012 ◽  
Vol 573-574 ◽  
pp. 86-91
Author(s):  
Xue Feng Liang ◽  
Wan Guo Hou ◽  
Ying Ming Xu ◽  
Lin Wang ◽  
Yue Bing Sun

Hydrotalcite-like compounds containing Mg2+, Al3+ and Fe3+ with a constant M2+/M3+ ratio but varying Al3+/Fe3+ ratios have been prepared. The effects of iron contents on the structural and sorption of Pb2+ by Mg-Al-Fe HTlc samples were investigated. The maximum sorption amounts were about 88-201 mg/g for Mg-Al-Fe HTlc samples. The sorption isotherm and kinetic processes can be described with Freundlich isotherm and pseudo first order kinetic model, respectively. The sorption amounts and rate increase with the increase of iron contents in HTlc samples. The sorption mechanism of Pb2+ on Mg-Al-Fe HTlcs may be the surface-induced precipitation and chemical binding adsorption.


2015 ◽  
Vol 723 ◽  
pp. 591-595
Author(s):  
Zu Lan Liu ◽  
Lan Qian Li ◽  
Yi Ping Liu ◽  
Ming Lu

Adsorption kinetic study of C.I. reactive blue 19 onto cotton was carried out in SDS-CTAB reverse micelles. The data of adsorption kinetics were examined using pseudo first-and second-order kinetic models. It was found that the adsorption kinetics of dye on cotton with diffusion controlling follows the pseudo first-order kinetic model.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 209-216 ◽  
Author(s):  
H.-S. Son ◽  
S.-B. Choi ◽  
K.-D. Zoh ◽  
E. Khan

The effects of ultraviolet (UV) intensity and wavelength on triclosan (TCS) photodegradation kinetic, efficiency, mechanisms and pathway were studied. The TCS photodegradation followed the pseudo-first order kinetic model at all UV intensities examined at the wavelengths of 254 and 365 nm and the photodegradation rate increased with increasing UV intensity. TCS photodegradation efficiencies of 90 to 98% and 79 to 90% were obtained at the wavelengths of 254 and 365 nm, respectively. TCS was degraded mainly by photon induced hydroxyl radicals while the direct photon reaction with TCS played a subordinate role. Chlorophenol, dichlorophenol and phenol were the intermediates detected in all experiments conducted. Dibenzodichloro-p-dioxin and dibenzo-p-dioxin were observed as the intermediates only at lower UV intensities investigated at the wavelength of 365 nm. Based on these intermediates, a complete TCS photolysis pathway was proposed for the first time.


2011 ◽  
Vol 396-398 ◽  
pp. 823-826
Author(s):  
Jie Cheng ◽  
Jian Zhang Li ◽  
Jun Bo Zhong ◽  
Wei Hu

Paralled flaw precipitation method has been employed to synthesize nanostructured ZnO. The prepared photocatalyst was characterized by BET, XRD. The paper reveals that Methyl Orange (MO) can be decolorized effectively in ZnO suspension system under UV irradiation. The optimal loading of photocatalyst in our experimental condition for the decolorization of MO is 1g/L. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrates that the decolorization reaction is a pseudo first order kinetic model with the limiting rate constant of 8.48×10-2 mgL-1min-1 and equilibrium adsorption constant 0.335 L/mg, respectively.


RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6804-6817
Author(s):  
Yunlan Peng ◽  
Hongle Shi ◽  
Zhenran Wang ◽  
Yongsheng Fu ◽  
Yiqing Liu

Compared to UV alone and PMS alone systems, diclofenac was removed more efficiently in UV/PMS system at pH 7.0 due to the contribution of SO4˙− and HO˙ and its degradation followed the pseudo-first order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document