The kinetics of the reaction between O 2 ( 1 ∆ g ) and ozone

The kinetics of the reaction O 2 ( 1 ∆ g ) + O 3 k 2 → 2O 2 + O have been investigated in the temperature range 195 to 439 K by using the kinetic photo­ionization technique to follow [O 2 ( 1 ∆ g )]. In Arrhenius form, the rate constant, k 2 ,'is given by k 2 = 4.0 ± 1.5 x 10 8 exp (13000 /RT) 1 mol -1 s -1 (joule units) ( = 4.0 ± 1.5 x 10 8 exp (3100/RT) 1 mol -1 s -1 (calorie units)). At room temperature (292 K) k 2 = 2.1 ± 0.3 x 10 6 1 mol -1 s -1 . The activation energy of 13 ± 1.6 kJ mol -1 suggests that there is virtually no barrier to the reaction other than that provided by its endothermicity (12.1 kJ mol -1 ). The results are used to derive, from pre­viously published data, a value of the rate constant for the reaction O + O 3 k 3 → 2O 2 of 4 ± 2 x 10 6 1 mol -1 s -1 at room temperature.

2008 ◽  
Vol 8 (20) ◽  
pp. 6261-6272 ◽  
Author(s):  
S. Vranckx ◽  
J. Peeters ◽  
S. A. Carl

Abstract. The absolute rate constant for the reaction that is the major source of stratospheric NOx, O(1D)+N2O → products, has been determined in the temperature range 227 K to 719 K, and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.11)×10−10 cm3 s−1, and for temperatures greater than 450 K a marked decrease in rate constant was observed, with a rate constant of only (0.94±0.11)×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1)C2H + O(1D) → CH(A) + CO and (kCL2)C2H + O(3P) → CH(A) + CO, both followed by CH(A) → CH(X) + hν, as kCL1(T)/kCL2(T)=(32.8T−3050)/(6.29T+398).


1973 ◽  
Vol 51 (17) ◽  
pp. 2934-2939 ◽  
Author(s):  
M. Simon ◽  
M. H. Back

An attempt has been made to measure the rate constant for the bimolecular process[Formula: see text]using acetaldehyde as a radical scavenger. The rate constant obtained may be expressed as follows:[Formula: see text]This activation energy corresponds to a value of 36 kcal/mol for ΔHf(allyl).


1997 ◽  
Vol 473 ◽  
Author(s):  
A. J. Kalkman ◽  
A. H. Verbruggen ◽  
G. C. A. M. Janssen ◽  
S. Radelaar

ABSTRACTThe time-dependence of the growth of Al2Cu precipitates in Al-Cu(lat% Cu) thin films is studied by means of resistance measurements at different temperatures. The samples are annealed at 400°C for 1 hour, and then quickly cooled down to room temperature. Afterwards, the samples are heated within one minute to a measurement temperature between 140 °C and 240 °C. Growth of precipitates causes a well defined decrease in resistance. The observed resistance decrease does not follow an exponential decay. In the investigated temperature range the resistance decrease can be accurately modelled by (R(t)-R∞) = (Ro-R∞)exp(-(t /τ)n), with the time constant τ= τ0 exp(Ea / kT). Excellent fits were obtained resulting in n = 0.66±0.05, independent of temperature, and Ea= 0.81±0.03 eV. This value for the activation energy agrees very well with the activation energy that has been reported in literature for both electromigration failure in Al-Cu and grain-boundary diffusion of Cu in Al. The value we found for n is intriguingly close to 2/3 and deviates strongly from the values of n reported for bulk Al-Cu (n = 1.5–1.8) in the same temperature range.


1966 ◽  
Vol 44 (24) ◽  
pp. 2927-2940 ◽  
Author(s):  
M. C. Lin ◽  
K. J. Laidler

The azomethane-sensitized pyrolysis of ethane was studied at low temperatures from 280 to 350 °C. Measurements were made of initial rates of formation of methane, nitrogen, and butane. From the rate of nitrogen production the rate constant for the azomethane decomposition into 2CH3 + N2 was[Formula: see text]A similar study of the propane decomposition, at temperatures from 260 to 300 °C, led to the value[Formula: see text]in satisfactory agreement. The rate of decomposition of the n-propyl radical into CH3 and C2H4 was obtained by comparing the rates of formation of C2H4 and n-C6H14; the rate constant was[Formula: see text]The activation energy of 31.4 kcal/mole, together with that of 8.9 kcal/mole for the reverse reaction obtained by Brinton, leads to a value of 20.3 kcal/mole for the dissociation energy of n-CH3—CH CH2 at 0 °K, and to a value of 22.8 at 25 °C. The corresponding values for the heats of formation 2of the n-propyl radical are 28.4 kcal/mole at 0 °K, and 23.1 kcal/mole at 25 °C. The dissociation energy of n-CH3CH2CH2—H is deduced to be 99.4 kcal/mole at 0 °K and 99.9 kcal/mole at 25 °C. An energy diagram is constructed for the various reactions of n-C3H7 and i-C3H7.


2008 ◽  
Vol 8 (3) ◽  
pp. 8881-8912 ◽  
Author(s):  
S. Vranckx ◽  
J. Peeters ◽  
S. A. Carl

Abstract. We have determined, in the temperature range 227 K to 719 K, the absolute rate constant for the reaction O(1D)+N2O → products and, in the temperature range 248 K to 600 K, the fraction of the reaction that yields O(3P). Both the rate constants and product yields were determined using a recently-developed chemiluminescence technique for monitoring O(1D) that allows for higher precision determinations for both rate constants, and, particularly, O(3P) yields, than do other methods. We found the rate constant, kR1, to be essentially independent of temperature between 400 K and 227 K, having a value of (1.37±0.09)×10−10 cm3 s−1. For temperatures greater than 450 K a marked decrease in value was observed, with a rate constant of only (0.94±0.11)×10−10 cm3 s−1 at 719 K. The rate constants determined over the 227 K–400 K range show very low scatter and are significantly greater, by 20% at room temperature and by 15% at 227 K, than the current recommended values. The fraction of O(3P) produced in this reaction was determined to be 0.002±0.002 at 250 K rising steadily to 0.010±0.004 at 600 K, thus the channel producing O(3P) can be entirely neglected in atmospheric kinetic modeling calculations. A further result of this study is an expression of the relative quantum yields as a function of temperature for the chemiluminescence reactions (kCL1) C2H+O(1D) → CH(A)+CO and (kCL2) C2H+O(3P) → CH(A)+CO, both followed by CH(A) → CH(X)+hν, as kCL1(T)/kCL2(T)=(32.8T−3050)/(6.29T+398).


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. 309-312 ◽  
Author(s):  
Yo Machida ◽  
Nayuta Matsumoto ◽  
Takayuki Isono ◽  
Kamran Behnia

Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room-temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin—a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum-relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.


1977 ◽  
Vol 55 (1) ◽  
pp. 19-26 ◽  
Author(s):  
R. James Maguire

Cellobiase has been isolated from the crude cellulase mixture of enzymes of Trichoderma viride using column chromatographic and ion-exchange methods. The steady-state kinetics of the hydrolysis of cellobiose have been investigated as a function of cellobiose and glucose concentrations, pH of the solution, temperature, and dielectric constant, using isopropanol–buffer mixtures. The results show that (i) there is a marked activation of the reaction by initial glucose concentrations of 4 × 10−3 M to 9 × 10−2 M and strong inhibition of the reaction at higher initial concentrations, (ii) the log rate – pH curve has a maximum at pH 5.2 and enzyme pK values of 3.5 and 6.8, (iii) the energy of activation at pH 5.1 is 10.2 kcal mol−1 over the temperature range 5–56 °C, and (iv) the rate decreases from 0 to 20% (v/v) isopropanol.The hydrolysis by cellobiase (EC 3.2.1.21) of p-nitrophenyl-β-D-glucoside was examined by pre-steady-state methods in which [Formula: see text], and by steady-state methods as a function of pH and temperature. The results show (i) a value for k2 of 21 s−1 at pH 7.0 (where k2 is the rate constant for the second step in the assumed two-intermediate mechanism [Formula: see text]) (ii) a log rate–pH curve, significantly different from that for hydrolysis of cellobiose, in which the rate increases with decreasing pH below pH 4.5, is constant in the region pH 4.5–6, and decreases above pH 6 (exhibiting an enzyme pK value of 7.3), and (iii) an activation energy of 12.5 kcal mol−1 at pH 5.7 over the temperature range 10–60 °C.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4820 ◽  
Author(s):  
Wojciech Kaczmarek ◽  
Jarosław Panasiuk ◽  
Szymon Borys ◽  
Aneta Pobudkowska ◽  
Mikołaj Majsterek

The most common cause of diseases in swimming pools is the lack of sanitary control of water quality; water may contain microbiological and chemical contaminants. Among the people most at risk of infection are children, pregnant women, and immunocompromised people. The origin of the problem is a need to develop a system that can predict the formation of chlorine water disinfection by-products, such as trihalomethanes (THMs). THMs are volatile organic compounds from the group of alkyl halides, carcinogenic, mutagenic, teratogenic, and bioaccumulating. Long-term exposure, even to low concentrations of THM in water and air, may result in damage to the liver, kidneys, thyroid gland, or nervous system. This article focuses on analysis of the kinetics of swimming pool water reaction in analytical device reproducing its circulation on a small scale. The designed and constructed analytical device is based on the SIMATIC S7-1200 PLC driver of SIEMENS Company. The HMI KPT panel of SIEMENS Company enables monitoring the process and control individual elements of device. Value of the reaction rate constant of free chlorine decomposition gives us qualitative information about water quality, it is also strictly connected to the kinetics of the reaction. Based on the experiment results, the value of reaction rate constant was determined as a linear change of the natural logarithm of free chlorine concentration over time. The experimental value of activation energy based on the directional coefficient is equal to 76.0 [kJ×mol−1]. These results indicate that changing water temperature does not cause any changes in the reaction rate, while it still affects the value of the reaction rate constant. Using the analytical device, it is possible to constantly monitor the values of reaction rate constant and activation energy, which can be used to develop a new way to assess pool water quality.


Sign in / Sign up

Export Citation Format

Share Document