Photoluminescent Silicon in Nanoporous Aluminium Oxide

1997 ◽  
Vol 486 ◽  
Author(s):  
Andreas Heilmann ◽  
Peter Jutzi ◽  
Andreas Klipp ◽  
Uwe Kreibig ◽  
Rolf Neuendorf ◽  
...  

AbstractThermal decomposition of a metastable silane in nanoporous alumina leads to the formation of luminescent silicon nanostructures. While varying the pore size of the transparent membranes the luminescence can be shifted from 504 nm up to 537 nm by building up a sheet-like structure of siloxene on the inner pore surface.

2021 ◽  
Vol 13 (14) ◽  
pp. 7593
Author(s):  
Farooq Khan Niazi ◽  
Malik Adeel Umer ◽  
Ashfaq Ahmed ◽  
Muhammad Arslan Hafeez ◽  
Zafar Khan ◽  
...  

Ultrafiltration membranes offer a progressive and efficient means to filter out various process fluids. The prime factor influencing ultrafiltration to a great extent is the porosity of the membranes employed. Regarding membrane development, alumina membranes are extensively studied due to their uniform porosity and mechanical strength. The present research work is specifically aimed towards the investigation of nanoporous alumina membranes, as a function of sintering parameters, on ultrafiltration performance. Alumina membranes are fabricated by sintering at various temperatures ranging from 1200–1300 °C for different holding times between 5–15 h. The morphological analysis, conducted using Scanning electron microscopy (SEM), revealed a homogeneous distribution of pores throughout the surface and cross-section of the membranes developed. It was observed that an increase in the sintering temperature and time resulted in a gradual decrease in the average pore size. A sample with an optimal pore size of 73.65 nm achieved after sintering at 1250 °C for 15 h, was used for the evaluation of ultrafiltration performance. However, the best mechanical strength and highest stress-bearing ability were exhibited by the sample sintered at 1300 °C for 5 h, whereas the sample sintered at 1250 °C for 5 h displayed the highest strain in terms of compression. The selected alumina membrane sample demonstrated excellent performance in the ultrafiltration of sugarcane juice, compared to the other process liquids.


2017 ◽  
Vol 27 (34) ◽  
pp. 1701756 ◽  
Author(s):  
Chun Zhou ◽  
Tamar Segal-Peretz ◽  
Muhammed Enes Oruc ◽  
Hyo Seon Suh ◽  
Guangpeng Wu ◽  
...  

2021 ◽  
Author(s):  
◽  
Eva Weatherall

<p>Tunable resistive pulse sensing (TRPS) is a particle-by-particle analysis technique combining the Coulter principle with size-tunable pores. TRPS can be used to characterize biological and synthetic particles 50 nm - 20 µm in diameter. Information is obtained from the resistive pulse signal, a transient change in ionic current observed when a particle passes through the pore. TRPS has been shown to provide excellent resolution and accuracy for measuring particle size and concentration as well as providing information about particle charge. TRPS is therefore applicable to many industrial and fundamental research areas involving aptamers, drug delivery particles, extracellular vesicles and other biological particle types. Advancement of this technology requires a better understanding of the technique, particularly in the area of particle surface charge measurement and this Thesis helps to provide that understanding.  In this work, firstly particle ζ-potential measurement using TRPS was investigated. A number of different measurement methods are presented and the uncertainties associated with each method are outlined. The ζ-potential for a variety of particles with different surface charges were measured in a range of electrolytes.  Particle ζ-potential measurements were then improved upon with the addition of streaming potential measurements to measure the pore surface charge. The ζ-potential of the pore surface, which makes a significant contribution to particle ζ-potential calculations, was measured using a set up which works alongside the qNano. Streaming potential measurements were also used to investigate changes in the pore surface charge following application of number of different chemical coatings. The volume of data collected and detail of analysis in this work (including uncertainties) is unprecedented in TRPS ζ potential measurements.  Biphasic pulses arising from the charge on the particles were investigated. The pulse is conventionally resistive, but biphasic pulses which include both resistive and conductive components are significant for less than 50 mM salt concentrations when measuring 200 nm particles. The experimental variables investigated include the concentration of the electrolyte, particle charge, pore size, applied voltage, and the direction of particlemotion. Conductive pulse size was seen to decrease with increasing electrolyte concentration and pore size and increase with applied voltage. A linear relationship was found between conductive pulse magnitude and particle surface group density. The influence of direction of motion on conductive pulses was consistent with concentration polarization of an ion selective pore. Biphasic pulses were also seen to affect conventional TRPS particle size measurements.  Finally, size distribution broadening due to varying particle trajectories was investigated. Pulse size distributions for monodisperse particles became broader when the pore size was increased and featured two distinct peaks. Relatively large pulses are produced by particles with trajectories passing near to the edge of the pore. Other experiments determined that pulse size distributions are independent of applied voltage but broaden with increasing pressure applied across the membrane.</p>


2010 ◽  
Vol 09 (01n02) ◽  
pp. 75-81
Author(s):  
L. Z. PEI ◽  
H. S. ZHAO ◽  
H. Y. YU ◽  
J. L. HU

Hollow germanium tubular nanostructures have been obtained by a hydrothermal process at a temperature of 400°C and pressure of 7 MPa with quick cooling to room temperature. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) show that the germanium tubular nanostructures are polycrystalline and have open-end structures at the tips. The diameter of germanium tubular nanostructures is about 40–70 nm and the inner pore size is about 10 nm in average. We propose the rolling mechanism for the formation of tubular nanostructures from lamellar nanostructures to explain the possible formation process of germanium tubular nanostructures.


2007 ◽  
Vol 334-335 ◽  
pp. 1237-1240 ◽  
Author(s):  
Jia Shen Li ◽  
Arthur F.T. Mak

This paper describes a novel method for coating hydroxyapatite (HA, Ca10(PO4)6(OH)2) nano-particles onto poly(DL-lactic-co-glycolic acid) (PLGA) scaffold. Paraffin micro-spheres were used as porogens to create porous scaffolds and as vehicles to transfer HA into PLGA scaffold. HA nano-particles / 50% ethanol suspension was mixed with paraffin micro-spheres. The paraffin micro-spheres / HA suspension were pressed together to form a paraffin scaffold. After it was dried, the HA was coated on the surface of the paraffin spheres. Then, PLGA solution was cast into the inter space among the paraffin micro-spheres and then the solvent was evaporated. Afterwards, the paraffin micro-spheres were dissolved and removed. PLGA scaffolds with controlled pore size, good interconnectivity and high porosity were obtained. The HA nano-particles were transferred from the paraffin surface to the surface of the pore wall throughout the PLGA scaffold.


Author(s):  
Mesbah Elyaagoubi ◽  
Youssef Najih ◽  
Mohyeddine Khadiri ◽  
Amane. Oueriagli ◽  
Abdelkader Outzourhitb ◽  
...  

BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1407-1418
Author(s):  
Zhi-hong Zhao ◽  
Ming-hui Zhang ◽  
Wen-Jing Liu ◽  
Quan-teng Li

Time-domain nuclear magnetic resonance (TD NMR) technology has been used for pore detection in porous materials for a long time, but there are few pore detection methods for microporous-mesoporous materials. The surface of different materials is obtained by pore detection of known pore materials. Relaxation rate, which obtains aperture information, has an important practical significance for the application of time-domain NMR technology in the characterization of porous materials. In this study, the T2 peaks of pores of known pore size materials, namely zeolite molecular sieves (0.3 nm and 1 nm) and anodized aluminum porous membranes (30 nm and 90 nm), were used to calculate the pore surface relaxation of zeolite molecular sieve with 0.3 nm pore size and 1 nm pore size. The ratio of the rate of the surface is 3.379; the ratio of the pore surface relaxation ratio of the 30 nm and 90 nm apertures of the anodized aluminum porous film is 3.031. This result is very close to the pore size ratio, indicating that the surface relaxation rate of the same material is directly related to the pore size, while the T2 peak can qualitatively measure the pore size.


Sign in / Sign up

Export Citation Format

Share Document