A New Technique For Visualizing The Displacement Field Of Indentations: The Case Of A Soft Film On A Hard Substrate

1997 ◽  
Vol 505 ◽  
Author(s):  
Joost J. Vlassak ◽  
T. Y. Tsui ◽  
W. D. Nix

ABSTRACTWe have developed a new technique for visualizing displacement fields of indentations in thin films. In this technique, the indented film consists of alternating layers of two different materials. One of the materials serves as a marker for visualizing the plastic flow induced by the indentation. Focused Ion Beam (FIB) milling is used to cross-section the indentation, revealing the deformed layers. This technique can be used to study how the presence of the substrate affects the plastic displacement field around the indentation. The technique is applied to a multilayered film of aluminum and titanium nitride on a silicon substrate. The titanium nitride layers are much thinner than the aluminum layers and serve the function of marker. Pile-up of the film material around the indenter and the effect of the hard substrate are easily revealed and a mechanism for pile-up is suggested. The technique also shows that the grain structure in the deformed zone around the indentation is altered profoundly.

2005 ◽  
Vol 20 (2) ◽  
pp. 299-302 ◽  
Author(s):  
D. Di Maio ◽  
S.G. Roberts

Measuring the toughness of brittle coatings has always been a difficult task. Coatings are often too thin to easily prepare a freestanding sample of a defined geometry to use standard toughness measuring techniques. Using standard indentation techniques gives results influenced by the effect of the substrate. A new technique for measuring the toughness of coatings is described here. A precracked micro-beam was produced using focused ion beam (FIB) machining, then imaged and loaded to fracture using a nanoindenter.


2001 ◽  
Vol 7 (S2) ◽  
pp. 936-937 ◽  
Author(s):  
B.J. Inkson ◽  
G. Mobus

Techniques for the 3D analysis of materials at the sub-micron level are of major importance for understanding the structure and performance of new nanoengineered materials. Established techniques for determining 3D shapes of individual grains include X-ray tomography and light microscopy for grains ≫ 1μm, and 3D-atom probe for conducting grains < 50nm size. A new technique of TEM EELS tomography is being developed for particles 2-300nm in a chemically distinct matrix.For the grain size range 200nm-20μm, we have applied a new technique of 3D analysis using focused ion beam (FIB) sectioning to the site-specific analysis of the shape of individual grains in a single phase matrix. in the 3D FIB technique, a sample surface may be serially sectioned using a highly focused beam of Ga+ ions (Fig. 1). A sequential set of 2D secondary electron images through the sample can be aligned in 3D by cross-correlation of the position of reference markers in the 2D images.


2013 ◽  
Vol 19 (3) ◽  
pp. 745-750 ◽  
Author(s):  
Juan Balach ◽  
Flavio Soldera ◽  
Diego F. Acevedo ◽  
Frank Mücklich ◽  
César A. Barbero

AbstractA new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m2/g.


Author(s):  
Mohan Prasad Manoharan ◽  
Amit Desai ◽  
Amanul Haque

Thin film specimens of titanium - titanium nitride multilayer erosion resistant coating were prepared using liftout technique in Focused Ion Beam - Scanning Electron Microscope (SEM). The fracture toughness of the thin film specimen was measured in situ using a cantilever bending experiment in SEM to be 11.33 MPa/m0.5, twice as much as conventional TiN coatings. Ti–TiN multi-layer coatings are part of a new class of advanced erosion resistant coatings and this paper discusses an experimental technique to measure the fracture toughness of these coatings.


2003 ◽  
Vol 04 (03) ◽  
pp. 501-504
Author(s):  
JIANXIA GAO ◽  
MARY B. CHAN-PARK ◽  
DONGZHU XIE ◽  
BRYAN K. A. NGOI ◽  
CHEE YOON YUE

1999 ◽  
Vol 564 ◽  
Author(s):  
L. M. Gignac ◽  
K. P. Rodbel ◽  
C. Cabral ◽  
P. C. Andricacos ◽  
P. M. Rice ◽  
...  

AbstractElectroplated Cu was found to have a fine as-plated microstructure, 0.05 ± 0.03 μm, with multiple grains through the film thickness and evidence of twins and dislocations within grains. Over time at room temperature, the grains grew to greater than 1 μm in size. Studied as a function of annealing temperature, the recrystallized grains were shown to be 1.6 ± 1.0 μm in size, columnar and highly twinned. The grain growth was directly related to the time dependent decrease in sheet resistance. The initial grain structure was characterized using scanning transmission electron microscopy (STEM) from a cross-section sample prepared by a novel focused ion beam (FIB) and lift-out technique. The recrystallized grain structures were imaged using FIB secondary electron imaging. From these micrographs, the grain boundary structures were traced, and an image analysis program was used to measure the grain areas. A Gaussian fit of the log-normal distribution of grain areas was used to calculate the mean area and standard deviation. These values were converted to grain size diameters by assuming a circular grain geometry.


1998 ◽  
Author(s):  
S.B. Herschbein ◽  
L.S. Fischer ◽  
T.L. Kane ◽  
M.P. Tenney ◽  
A.D. Shore

Abstract Copper will probably replace aluminum alloys as the interconnect metallurgy of choice for high performance semiconductor devices. This transition will challenge the suitability of established practices in focused ion beam (FIB) chip repair. A fundamental rethink in methodology, techniques, and process gases will be required to deal with the new metal films. This paper discusses the results of recent experiments in the areas of FIB exposure, cuts and connections to buried copper lines. While copper tends to mill faster than aluminum, etch rate variations due to grain structure tend to make reliable isolation cuts more difficult. The films also have been shown to suffer regrowth and surface reactions during long term storage following FIB exposure. Attempts at halogen gas assisted etch (GAE) mills result in undesirable removal characteristics, and in the case of bromine, the spontaneous destruction of all exposed copper in the immediate area. Resistance measurements and reliability of deposited tungsten connections to copper lines are also presented. In addition, the latest techniques developed for aluminum wiring isolation and device characterization are shown. These include 'cleanup' methods for achieving good circuit isolation without the extensive use of local oxide deposition, and the latest multilevel version of the FIB ‘wagon wheel’ for SRAM cell characterization. Also included is preliminary data from a custom built FIB chamber four manipulator prober module.


1990 ◽  
Vol 199 ◽  
Author(s):  
Kyung-ho Park

ABSTRACTA procedure for preparing cross-sectional TEM specimens by focused ion beam etching (FIB) of specific regions on an integrated circuit chip is outlined. The investigation of the morphology, structure and local chemistry of precisely selected regions of semiconductor devices becomes increasingly important since the lateral dimensions and layer thickness of device structures are continually being reduced. The standard technique of preparing specimens for TEM, whether planar or cross-sectional, cannot select particular small regions. Some techniques and a number of tools and fixtures have been proposed which allow us to prepare TEM specimen of prespecified locations in complex devices. Most of these techniques, however, are still very difficult, tedious process and time consuming.A new technique has been proposed recently involving the use of FIB. The technique ensures that the preselected area of submicron scale will be located in the electron transparent section used for TEM imaging, in preparation turn-around time of about two hours. The TEM imaging of specific contacts via hole in a VLSI chip is illustrated.


Sign in / Sign up

Export Citation Format

Share Document