Temperature And Dose Dependence of An Amorphous Layer Formed By Ion Implantation

1985 ◽  
Vol 51 ◽  
Author(s):  
Eliezer Dovid Richmond ◽  
Alvin R. Knudson

ABSTRACTA model is formulated to predict the width of an amorphous layer in Si produced by ion implantation. The dependency of the amorphous Si layer width on the ion implantation energy, dose, and temperature is computed.

2000 ◽  
Vol 610 ◽  
Author(s):  
R. Annunziata ◽  
R. Bottini ◽  
P. Colpani ◽  
C. Cremonesi ◽  
G. Ghidini ◽  
...  

AbstractIn this paper we show that dopant decoration of process-induced defects is responsible for a failure mechanism of memory devices. From the electrical point-of-view, the defect-related failure consists in a source-to-drain resistive path formed by junction piping. This mechanism is made active by the very close spacing which is typical of present device structures. A device-like test structure is used for defect detection. This structure proves to be a very effective tool for studying the impact of various process steps on defect generation, in that it allowes statistical data about the formation of these defects to be collected. TEM analyses are extensively used for studying the evolution of end-of-range defects during subsequent thermal treatments and for measuring the amorphous layer width under various implantation conditions.The role of high dose implantations in the generation of this sort of defects is discussed. Even if the amorphous layer is completely recovered by a suitable recristallization annealing, residual defects grow and become dopant-decorated during post-implantation thermal treatments. Defect density is increased by oxidizing treatments. In this case point defect injection is active both in enhancing dopant diffusion and in growing defects.Defect formation is suppressed if the amorphous layer is made very shallow (≤ 50 nm) by suitable choices of the screen oxide and of the implantation energy. A binary collision code is used in order to estimate the dependence on energy of the self-interstitial excess outside the amorphous region. The results of these calculations indicate that defect suppression can be tentatively explained by point defect annihilation at the silicon surface.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. X. Cao ◽  
D. K. Sood ◽  
A. P. Pogany

ABSTRACTIndium implantation into a-axis sapphire to peak concentrations of 8–45 mol % In produces amorphous surface layers.Migration of In during isothermal annealing at 600°C shows a strong ion dose dependence. For a dose of 6×1016In/cm2, two distinct types of In migration are seen - a) rapid diffusion of In within amorphous Al2O3 and b) diffusion of In into crystalline Al2O3 underlying the amorphous layer. For doses lower than 3×1016In/cm2 , no such migration of In is seen under identical anneal conditions. However, In undergoes phase separation into crystalline In2O3 particles embedded in amorphous Al2O3 at all doses.


1993 ◽  
Vol 301 ◽  
Author(s):  
P.N. Favennec ◽  
H. L'haridon ◽  
D. Moutonnet ◽  
M. Salvi ◽  
M. Gauneau

ABSTRACTA review of the main results concerning the ion implantation of the rare-earth elements is given.To obtain the best optical activation of rare-earths, we attempt to optimize the implantation (energy, dose) and annealing (temperature, duration) conditions. The studied materials are Si, II-VI binaries (ZnTe, CdS), III-V binaries (GaAs, InP), III-V ternaries (GaAlAs, GaInAs) and III-V quaternaries (GaInAsP).


Author(s):  
JiangBei Shi ◽  
WeiTing Chien ◽  
QiHua Zhang ◽  
AiMin Li ◽  
ChuanJun Liu

Abstract The accuracy of ion implantation is very important in semiconductor manufacturing and will directly affect the performance of the individual devices and even the whole chip. The deviations of ion implantation energy, dose and angle often result from abnormality of implant equipment or process design limit. The information of ion implantation energy, dose and angle can be qualitatively and quantitatively analyzed by SIMS (Secondary Ion Mass Spectrometry) [1], which provides a way to diagnose ion implanter issue. Based on SIMS analysis results, we can judge whether ion implanter meets the requirements and whether the process design achieves the expected goal. In this paper, we report a SIMS data analysis method determine the deviation of ion implantation angle. A term of deviation rate is defined and a related calculation method was introduced, which is proportional to the deviation angles of the ion implanter. Then, a statistical analysis on a large number of data of deviation rates and ion implantation angles showed that the sampling data followed normal distribution, and thus the corresponding 3 sigma could be obtained. Using the determined 3 sigma range of the deviation rates, we can define the acceptable range for deviation rate. Further, we can use the actual deviation rate to judge if the implant equipment needs maintenance or not, or suggest the direction for improvement. Finally, we set up an oriented and quantitative optimization method of angle deviation by the full mapping of SIMS depth profiles, which can directly set the relationship between the angle deviation and the adjustment parameters of ion implantation disk (Δ alpha, Δ beta). The equipment’s maintenance time and cost can thus be minimized. This method can be used as early detection to the abnormity of ion implant equipment.


1988 ◽  
Vol 100 ◽  
Author(s):  
Rodney A. Herring ◽  
Eric M. Fiore

ABSTRACTThe microstructure of high-energy (0.5–6.0 MEV) As-ion implanted Si and rapid thermal annnealed (RTA'd) Si has been studied by transmission electron microscopy (TEM). The implantations formed buried amorphous layers that recrystallized during RTA at different temperatures and became either single crystal or polycrystalline depending on their implation energy and fluence. At energies > 2.5 MeV and fluences < 1015 cm−2, recrystallization occurred below 400°C and regowth was single crystal. At an energy of 6 MeV and fluence of 5 × 1015 cm−2 recrystallization occurred above 600°C and regrowth was polycrystalline. When the implantation energy and fluence were reduced to 0.5 MeV and 2 × 1014 cm−2, respectively, recrystallization occurred above 600°C and regrowth was polycrystalline. The above results are explained by both the formation mechanisms of amorphous Si resulting from ion implantation and the structural order of a-Si.


1981 ◽  
Vol 4 ◽  
Author(s):  
E. Fogarassy ◽  
R. Stuck ◽  
M. Toulemonde ◽  
P. Siffert ◽  
J.F. Morhange ◽  
...  

Arsenic doped amorphous silicon layers have been deposited on silicon single crystals by R.F.cathodic sputtering of a silicon target in a reactive argon-hydrogen mixture, and annealed with a Q-switched Ruby laser. Topographic analysis of the irradiated layers has shown the formation of a crater, due to an evaporation effect of material which could be related to the presence of a high concentration of Ar in the amorphous layer. RBS and Raman Spectroscopy showed that the remaining layer is not recrystallised probably due to inhibition by the residual hydrogen. However, it was found that arsenic diffuses into the monocrystalline substrate by laser induced diffusion of dopant from the surface solid source, leading to the formation of good quality P-N junctions.


1990 ◽  
Vol 57 (13) ◽  
pp. 1340-1342 ◽  
Author(s):  
J. A. Roth ◽  
G. L. Olson ◽  
D. C. Jacobson ◽  
J. M. Poate

2002 ◽  
Vol 716 ◽  
Author(s):  
Takaaki Amada ◽  
Nobuhide Maeda ◽  
Kentaro Shibahara

AbstractAn Mo gate work function control technique which uses annealing or N+ ion implantation has been reported by Ranade et al. We have fabricated Mo-gate MOS diodes, based on their report, with 5-20 nm SiO2 and found that the gate leakage current was increased as the N+ implantation dose and implantation energy were increased. Although a work function shift was observed in the C-V characteristics, a hump caused by high-density interface states was found for high-dose specimens. Nevertheless, a work function shift larger than -1V was achieved. However, nitrogen concentration at the Si surface was about 1x1020 cm-3 for the specimen with a large work function shift.


Sign in / Sign up

Export Citation Format

Share Document