Microscopic Description of Plasticity in Computer Generated Metallic Nanophase Samples

1998 ◽  
Vol 538 ◽  
Author(s):  
M. Spaczér ◽  
H. Van Swygenhoven ◽  
A. Caro

AbstractWe report simulations on the plastic behaviour of nanocrystalline Ni and Cu with grain sizes in the range of 3-12 nm. We observe a change in deformation mechanism in both materials: at the smallest grain sizes all deformation is accommodated in the grain boundaries, while at higher grain sizes we observe intragrain deformation. Analysis of the atomic configurations shows that stacking faults are produced by the passage of partial dislocations generated and absorbed in opposite grain boundaries. In Cu, we observe the stacking faults at smaller grain sizes than in Ni (8 and 12nm, respectively), which is attributed to the lower stacking fault energy of copper. Dislocations appear on slip systems that are not necessarily those favoured by the Schmid factor. Atomic displacement analysis shows deformation starts at triple points, with grain boundary sliding followed by the creation of intragrain partial dislocations.

1990 ◽  
Vol 196 ◽  
Author(s):  
R. W. Siegel

ABSTRACTThe ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.


2007 ◽  
Vol 359-360 ◽  
pp. 344-348 ◽  
Author(s):  
Bo Zhao ◽  
Yan Wu ◽  
Guo Fu Gao ◽  
Feng Jiao

Surface microstructure of nano-composite ceramics prepared by mixed coherence system and machined by two-dimensional ultrasonic precision grinding was researched using TEM, SEM, XRD detector and other equipments. Structure, formation mechanism and characteristic of metamorphic layer of ground surface of nano-composite ceramics were researched. The experiment shows micro deformation mechanism of ceramic material in two-dimensional ultrasound grinding is twin grain boundary and grain-boundary sliding for Al2O3, and it is crystal dislocation of enhanced phase, matrix grain boundary sliding, coordination deformation of intergranular second phase as well as its deformation mechanism for nano-composite ceramics. The fracture surfaces of nano-composite materials with different microscopic structure were observed using TEM and SEM. Research shows that ZrO2 plays an important influence on the generation and expansion of crack, and enhances the strength of grain boundaries. When grain boundaries is rich in the ZrO2 particles, the crack produced in grinding process will be prevented, and the surface with plastic deformation will be smooth. The results shows nanoparticles dispersed in grain boundary prevents crack propagation and makes materials fracture transgranularly which makes the processed surface fine.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


Solid Earth ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1193-1209 ◽  
Author(s):  
James Gilgannon ◽  
Florian Fusseis ◽  
Luca Menegon ◽  
Klaus Regenauer-Lieb ◽  
Jim Buckman

Abstract. Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.


2002 ◽  
Vol 43 (7) ◽  
pp. 1561-1565 ◽  
Author(s):  
Tsuyoshi Watanabe ◽  
Hidehiro Yoshida ◽  
Yuichi Ikuhara ◽  
Taketo Sakuma ◽  
Hiroyuki Muto ◽  
...  

1981 ◽  
Vol 5 ◽  
Author(s):  
C.B. Carter

ABSTRACTDislocations in low-angle tilt boundaries exhibit a wide variety of Burgers vector including a/2<112> a<001> and a<111>. The dislocations are usually dissociated: Shohkley, stair-rod and Frank partial dislocations may each be formed together with associated intrinsic and extrinsic stackingfaults. Dislocations in low-angle {111} twist boundaries are usually assumed to dissociated by a glide mechanism to give two types of extended nodes, known as P–type and K–type, which contain intrinsic and extrinsic stacking-faults respectively. It is shown that dissociation by climb actually occurs for both types of grain boundary.


2007 ◽  
Vol 345-346 ◽  
pp. 565-568
Author(s):  
Byung Nam Kim ◽  
Keijiro Hiraga ◽  
Koji Morita ◽  
Hidehiro Yoshida

For steady-state deformation caused by grain-boundary diffusion and viscous grain-boundary sliding, the creep rate of regular polyhedral grains is analyzed by the energy-balance method. For the microstructure, the grain-grain interaction increases the degree of symmetry of diffusional field, resulting in a decrease of the effective diffusion distance. Meanwhile, the viscous grain-boundary sliding is found to decrease the creep rate. The present analysis reveals that the grain-size exponent is dependent on the grain size and the grain-boundary viscosity: the exponent becomes unity for small grain sizes and/or high viscosity, while it is three for large grain sizes and/or low viscosity.


2008 ◽  
Vol 584-586 ◽  
pp. 35-40 ◽  
Author(s):  
Eduard Kozlov ◽  
Nina Koneva ◽  
L.I. Trishkina ◽  
A.N. Zhdanov ◽  
M.V. Fedorischeva

The present work is devoted to the investigation of the influence of the grain size on the main mechanical characteristics of nanopolycrystals of different metals. The Hall-Petch parameter behaviour for Al, Cu, Ni, Ti and Fe was examined in the wide grain size interval. The stages of plastic deformation and the parameters of work hardening for nanocrystalline copper were analysed in detail. The deformation mechanisms and critical grain sizes accounting for the transition from the dislocation slip to the grain boundary sliding were described.


Sign in / Sign up

Export Citation Format

Share Document