Formation of Metal Nitrides by Nitrogen Implantation

1985 ◽  
Vol 54 ◽  
Author(s):  
En Ma ◽  
Bai-Xin Liu ◽  
Xin Chen ◽  
Heng-De Li

ABSTRACTA systematic study was performed to investigate the ion beam induced metal nitride formation by direct nitrogen implantation into 10 selected metals, either of thin film or bulk material. An X-ray diffractometer, together with a specially-designed Seemann-Bohlin attachment, was employed to provide fast and reliable phase identification in the thin implanted layer. The results show that room temperature nitrogen implantation can lead to the formation of many, but not all, of the equilibrium metal nitrides. The formation of metal nitrides by implantation is discussed in terms of the thermodynamic condition and the readiness of structural trans format ion.

2021 ◽  
pp. 149619
Author(s):  
Manni Chen ◽  
Zhipeng Zhang ◽  
Runze Zhan ◽  
Juncong She ◽  
Shaozhi Deng ◽  
...  

2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


1994 ◽  
Vol 356 ◽  
Author(s):  
K. B. Yoder ◽  
D. S. Stone ◽  
J. C. Lin ◽  
R. A. Hoffmann

AbstractIndentation creep, load relaxation, and rate-change experiments probe room temperature and 80°C creep properties of a 1.3 μm-thick molybdenum film on silicon. The film, with 0.51 GPa compressive stress, 8 GPa hardness and estimated 40 nm grain size, was deposited using steered-arc evaporation at -17V bias. Despite its small grain size and high hardness, the thin film behaves like bulk molybdenum does: the rate sensitivity of the hardness is only weakly-dependent on measurement path (as with bulk material), and activation volumes calculated based on strain rate sensitivity are consistent with those of bulk molybdenum We suspect deformation mechanisms are similar to those in bulk molybdenum under similar conditions.


2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.


2001 ◽  
Vol 15 (28n29) ◽  
pp. 1355-1360 ◽  
Author(s):  
UDAY LANKE ◽  
ANNETTE KOO ◽  
SIMON GRANVILLE ◽  
JOE TRODAHL ◽  
ANDREAS MARKWITZ ◽  
...  

Amorphous GaN films were deposited on various substrates viz. Si (100), quartz, glass, Al, stainless steel and glassy carbon by thermal evaporation of gallium in the presence of energetic nitrogen ions from a Kaufman source. The films were deposited at room temperature and 5 × 10-4 mbar nitrogen partial pressure. The effect of a low energy nitrogen ion beam during the synthesis of films was investigated for energies 40 eV and 90 eV. The N:Ga atomic ratio, bonding state, microstructure, surface morphology, and electrical properties of the deposited a-GaN films were studied by different characterisation techniques. The films are found to be X-ray amorphous in nature, which is confirmed by Raman spectroscopy. Rutherford Backscattering Spectroscopy (RBS) and Nuclear Reaction Analysis (NRA) indicate the N:Ga atomic ratio in the films. The 400-750 eV energy range is thought to be optimal for the production of single-phase amorphous GaN . The effect of ion-energy on optical, Raman, and electrical conductivity measurements of the films is also presented.


2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


1992 ◽  
Vol 36 ◽  
pp. 273-278
Author(s):  
P.A. Pella ◽  
W.R. Kelly ◽  
K.E. Murphy ◽  
E.B. Steel ◽  
S.B. Schiller

NIST SRM 2708 is a thin film of zinc sulfide approximately 0.02 μm thick that was sputter deposited on polycarbonate substrates using a NIST ion-beam instrument. It is intended for the standardization of x-ray fluorescence spectrometers, especially for analysis of air particulates or similar material collected on filter media.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


1984 ◽  
Vol 37 ◽  
Author(s):  
A. M. Kadin ◽  
R. W. Burkhardt ◽  
J. T. Chen ◽  
J. E. Keem ◽  
S. R. Ovshinsky

AbstractFollowing the earlier multilayer work of Ovshinsky and colleagues, we have fabricated thin-film samples consisting of alternating periodic layers of a transition metal (Nb, Mo, W) and a semiconducting element (Si, Ge, C) by sequential sputtering from two targets onto room-temperature substrates. The regular repeat spacing has been varied from 10 Å to more than 100 Å, with as many as several hundred layer pairs. Crystalline epitaxy was not required or even desired; many samples were largely amorphous as determined from x-ray scattering. Electrical transport measurements of superconducting properties have been carried out parallel to the layers. Samples exhibited highly anisotropic superconducting critical magnetic fields, with some values in excess of 200kG parallel to the layers. Evidence suggesting an asymmetric interface profile will be presented.


Sign in / Sign up

Export Citation Format

Share Document