Electroreflectance Study of Light-Emitting Porous Silicon

2000 ◽  
Vol 609 ◽  
Author(s):  
Toshihiko Toyama ◽  
Akihito Shimode ◽  
Hiroaki Okamoto

ABSTRACTElectroreflectance spectroscopy measurements have been performed on light-emitting porous Si (LEPSi). The transmission electron microscope measurements reveal that LEPSi includes Si nanocrystals with a mean crystal size of 1–2 nm. The ER features are observed at a transition energy of 3.4 eV in all of the samples, giving that LEPSi still keeps the threedimensional (3D) electronic structure. Changes in the transition energies are not found for LEPSi with the different mean crystal sizes. Furthermore, we directly observed interband transitions of quantized states due to quantum-confined electron-hole (e-h) pairs in LEPSi as two or three extra ER features being located between 1.2 and 3.1 eV which are never observed in bulk crystalline Si. Employing a simple effective mass approximation model, we have evaluated the reduced mass, the kinetic energies and the Coulomb attraction energies of the quantumconfined e-h pairs. We also found that the energy distance between the transition energies at the ground state and the photoluminescence (PL) peak energies basically corresponds to the Coulomb attraction energies. Finally, we propose a new luminescent model based on interband transitions involving the quantum-confined dense e-h plasma.

2006 ◽  
Vol 73 (24) ◽  
Author(s):  
R. Kudrawiec ◽  
M. Gladysiewicz ◽  
J. Misiewicz ◽  
H. B. Yuen ◽  
S. R. Bank ◽  
...  

1989 ◽  
Vol 145 ◽  
Author(s):  
E. F. Schubert ◽  
T. D. Harris ◽  
J. E. Cunningham

AbstractOptical absorption and photoluminescence experiments are performed on GaAs doping superlattices, which have a δ-function-like doping profile of alternating n-type and p-type dopant sheets. Absorption and emission spectra reveal for the first time the clear signature of quantum-confined interband transitions. The peaks of the experimental absorption and luminescence spectra are assigned to calculated energies of quantum-confined transitions with very good agreement. It is shown that the employment of the δ-doping technique results in improved optical properties of doping superlattices.


1996 ◽  
Vol 449 ◽  
Author(s):  
S. Chichibu ◽  
T. Azuhata ◽  
T. Sota ◽  
S. Nakamura

ABSTRACTSpontaneous emission mechanisms of InGaN single quantum well (SQW) blue and green light emitting diodes (LEDs) and multiquantum well (MQW) laser diode (LD) structures were investigated. Their static electroluminescence (EL) peak was assigned to the recombination of excitons localized at certain potential minima in the quantum well (QW). The transmission electron micrographs (TEM) indicated fluctuation of In molar fraction in the QWs. The blueshift of the EL peak caused by the increase of the driving current was explained by combined effects of the quantum-confinement Stark effect and band filling of the localized states by excitons.


2009 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Z.R. Ismagilov ◽  
E.V. Matus ◽  
I.Z. Ismagilov ◽  
M.A. Kerzhentsev ◽  
V.I. Zailovskii ◽  
...  

<p>The structure changes of Mo/ZSM-5 catalysts with different Mo content (2 and 10 wt. % Mo) and Si/Al atomic ratio (17, 30 and 45) during the methane dehydroaromatization have been investigated by X-ray powder diffractometry, N<sub>2</sub> adsorption and transmission electron microscopy. The treatment of Mo/ZSM-5 catalysts in reducing atmosphere (CH<sub>4</sub> or H<sub>2</sub>) at about 700 °C promotes development of mesoporous system. The pores are open to the exterior of the zeolite grain and have an entrance diameter of ~ 4-10 nm. It is proposed that mesopore formation in Mo/ZSM-5 catalyst is connected with the dealumination of zeolite. The mesopore formation in the parent H-ZSM-5 zeolite by NaOH treatment does not improve the activity of /ZSM-5 catalyst.</p>


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1761 ◽  
Author(s):  
Maura Pellei ◽  
Valentina Gandin ◽  
Luciano Marchiò ◽  
Cristina Marzano ◽  
Luca Bagnarelli ◽  
...  

Copper(II) complexes of bis(pyrazol-1-yl)- and bis(triazol-1-yl)-acetate heteroscorpionate ligands have been synthesized. The copper(II) complexes [HC(COOH)(pzMe2)2]Cu[HC(COO)(pzMe2)2]·ClO4, [HC(COOH)(pz)2]2Cu(ClO4)2 (pzMe2 = 3,5-dimethylpyrazole; pz = pyrazole) were prepared by the reaction of Cu(ClO4)2·6H2O with bis(3,5-dimethylpyrazol-1-yl)acetic acid (HC(COOH)(pzMe2)2) and bis(pyrazol-1-yl)acetic acid (HC(COOH)(pz)2) ligands in ethanol solution. The copper(II) complex [HC(COOH)(tz)2]2Cu(ClO4)2·CH3OH (tz = 1,2,4-triazole) was prepared by the reaction of Cu(ClO4)2·6H2O with bis(1,2,4-triazol-1-yl)acetic acid (HC(COOH)(tz)2) ligand in methanol solution. The synthesized Cu(II) complexes, as well as the corresponding uncoordinated ligands, were evaluated for their cytotoxic activity in monolayer and 3D spheroid cancer cell cultures with different Pt(II)-sensitivity. The results showed that [HC(COOH)(pzMe2)2]Cu[HC(COO)(pzMe2)2]·ClO4 was active against cancer cell lines derived from solid tumors at low IC50 and this effect was retained in the spheroid model. Structure and ultra-structure changes of treated cancer cells analyzed by Transmission Electron Microscopy (TEM) highlighted the induction of a cytoplasmic vacuolization, thus suggesting paraptotic-like cancer cell death triggering.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2427 ◽  
Author(s):  
Dongdong Wang ◽  
Michael Fina ◽  
Suhan Kim ◽  
Chunmei Zhang ◽  
Ting Zhang ◽  
...  

The trap-assisted charge injection in polyfluorene-poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) model systems with an Al or Al/LiF cathode is investigated. We find that inserting 1.3 nm LiF increases electron and hole injections simultaneously and the increase of holes is greater than electrons. The evolution of internal interfaces within polymer light-emitting diodes is observed by transmission electron microscopy, which reveals that the introduction of LiF improves the interface stability at both the cathode (cathode/polymer) and the anode (indium tin oxide (ITO)/PEDOT:PSS). Above-mentioned experimental results have been compared to the numerical simulations with a revised Davids model and potential physical mechanisms for the trap-assisted charge injection are discussed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 735 ◽  
Author(s):  
Taiping Xie ◽  
Jiao Hu ◽  
Jun Yang ◽  
Chenglun Liu ◽  
Longjun Xu ◽  
...  

Magnetic BiOBr/SrFe12O19 nanosheets were successfully synthesized using the hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and UV-visible diffused reflectance spectra (UV-DRS), and the magnetic properties were tested using a vibration sample magnetometer (VSM). The as-produced composite with an irregular flaky-shaped aggregate possesses a good anti-demagnetization ability (Hc = 861.04 G) and a high photocatalytic efficiency. Under visible light (λ > 420 nm) and UV light-emitting diode (LED) irradiation, the photodegradation rates of Rhodamine B (RhB) using BiOBr/SrFe12O19 (5 wt %) (BOB/SFO-5) after 30 min of reaction were 97% and 98%, respectively, which were higher than that using BiOBr (87%). The degradation rate of RhB using the recovered BiOBr/5 wt % SrFe12O19 (marked as BOB/SFO-5) was still more than 85% in the fifth cycle, indicating the high stability of the composite catalyst. Meanwhile, after five cycles, the magnetic properties were still as stable as before. The radical-capture experiments proved that superoxide radicals and holes were main active species in the photocatalytic degradation of RhB.


Sign in / Sign up

Export Citation Format

Share Document