Surface Morphology of SiGe Epitaxial Layers Grown on Uniquely Oriented Si Substrates

2000 ◽  
Vol 648 ◽  
Author(s):  
Morgan E. Ware ◽  
Robert J. Nemanich

AbstractThe 4% lattice mismatch between Si and Ge creates strain in epitaxial layers of SiGe alloys on Si, and this strain can manifest itself in the morphological structure of the surface of the epitaxial layer. This study explores the relationship of the evolution of the surface morphology of SiGe layers grown on a range of Si surface orientations. We have grown thin, strained and thick, relaxed layers of Si0.7Ge0.3 by solid source molecular beam epitaxy on substrates with surface normals rotated from [001] towards [111] by angles of θ = (0, 2, 4, 10, 22) degrees. The surface morphology was investigated by atomic force microscopy, which showed considerable ordering of surface features on relaxed samples. These features evolve from hut-like structures at 0 degrees to large mesa-like structures separated by pits and crevices at 22 degrees. The organization of these features is also shown to vary with the substrate orientation. Each surface has characteristic directions along which features are aligned, and these directions vary continuously with the angle of rotation of the substrate. Transmission electron microscopy confirmed that misfit dislocations had formed along those same directions. The state of relaxation of each layer is quantified by Raman spectroscopy in order to make a direct correlation between residual strain and surface morphology.

1999 ◽  
Vol 594 ◽  
Author(s):  
M. E. Ware ◽  
R. J. Nemanich

AbstractThis study explores stress relaxation of epitaxial SiGe layers grown on Si substrates with unique orientations. The crystallographic orientations of the Si substrates used were off-axis from the (001) plane towards the (111) plane by angles, θ = 0, 10, and 22 degrees. We have grown 100nm thick Si(1−x) Ge(x) epitaxial layers with x=0.3 on the Si substrates to examine the relaxation process. The as-deposited films are metastable to the formation of strain relaxing misfit dislocations, and thermal annealing is used to obtain highly relaxed films for comparison. Raman spectroscopy has been used to measure the strain relaxation, and atomic force microscopy has been used to explore the development of surface morphology. The Raman scattering indicated that the strain in the as-deposited films is dependent on the substrate orientation with strained layers grown on Si with 0 and 22 degree orientations while highly relaxed films were grown on the 10 degree substrate. The surface morphology also differed for the substrate orientations. The 10 degree surface is relatively smooth with hut shaped structures oriented at predicted angles relative to the step edges.


2004 ◽  
Vol 230-232 ◽  
pp. 93-100 ◽  
Author(s):  
O. Yastrubchak ◽  
T. Wosiński ◽  
J.Z. Domagała ◽  
E. Łusakowska

Partially relaxed III–V heterostructures: GaAs/InGaAs and InP/InAlAs/InGaAs, with a small lattice mismatch, grown using molecular beam epitaxy under compressive or tensile misfit stress at the (001) interface, have been investigated by means of high-resolution X-ray diffractometry, atomic force microscopy and generalized ellipsometry. Additionally, transmission electron microscopy and electron-beam induced current in a scanning electron microscope have been employed to reveal misfit dislocations at the heterostructure interface. Chemical etching was used to determine polarity of the crystals and threading dislocation densities in the epitaxial layers. Our findings are interpreted in terms of the dependent on growth conditions, material’s composition and doping glide velocities of two types of misfit dislocations: α and β, differing in their core structure and lying along two orthogonal 〈110〉 crystallographic directions at the (001) interface.


2005 ◽  
Vol 38 (2) ◽  
pp. 260-265 ◽  
Author(s):  
Leonore Wiehl ◽  
Jens Oster ◽  
Michael Huth

Epitaxially grown Mo films on a faceted corundum (α-Al2O3)mplane were investigated by transmission electron microscopy. Low- and high-resolution images were taken from a cross-section specimen cut perpendicular to the facets. It was possible to identify unambiguously the crystallographic orientation of these facets and explain the considerable deviation (∼10°) of the experimental interfacet angle, as measured with atomic force microscopy (AFM), from the expected value. For the first time, proof is given for a smooth \{10\bar{1}1\} facet and a curvy facet with orientation near to \{10\bar{1}\bar{2}\}. Moreover, the three-dimensional epitaxial relationship of an Mo film on a faceted corundummsurface was determined.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


2008 ◽  
Vol 381-382 ◽  
pp. 525-528 ◽  
Author(s):  
B.L. Wang ◽  
Han Huang ◽  
Jin Zou ◽  
Li Bo Zhou

Silicon (100) substrates machined by chemo-mechanical-grinding (CMG) and chemicalmechanical- polishing (CMP) were investigated using atomic force microscopy, cross-sectional transmission electron microscopy and nanoindentation. It was found that the substrate surface after CMG was slightly better than machined by CMP in terms of roughness. The transmission electron microscopy analysis showed that the CMG-generated subsurface was defect-free, but the CMP specimen had a crystalline layer of about 4 nm in thickness on the top of the silicon lattice as evidenced by the extra diffraction spots. Nanoindentation results indicated that there exists a slight difference in mechanical properties between the CMG and CMP machined substrates.


1995 ◽  
Vol 379 ◽  
Author(s):  
K. Eberl ◽  
A. Kurtenbach ◽  
K. HÄusler ◽  
F. Noll ◽  
W.W. RÜhle

ABSTRACTNanoscale InP islands are formed during InP/In0 48Ga0.52P heteroepitaxy due to the lattice mismatch of about 3.7%. The samples are prepared by solid source molecular beam epitaxy on (001) GaAs substrate. Atomic force microscopy measurements show that the size of the islands is typically 15 to 50 nm in diameter and about 5 to 10 nm high depending on the nominally deposited InP layer thickness, which is between 1 and 7.5 monolayers. Transmission electron micrographs show the coherent incorporation into the In0.48Ga0.52P matrix for InP islands with 2.5 monolayers. Resonantly excited time-resolved photoluminescence (PL) measurements of the self assembling InP dots are performed for optical characterisation. The decay times are typically 400 ps. The dependence on excitation power and temperature indicates the quantum dot nature of the InP islands. Finally a pronounced alignment of the InP islands is obtained on strained In0.61Ga0.39P buffer layers.


2004 ◽  
Vol 19 (8) ◽  
pp. 2315-2321 ◽  
Author(s):  
Thang Nguyen ◽  
Walter Varhue ◽  
Edward Adams ◽  
Mark Lavoie ◽  
Stephen Mongeon

The heteroepitaxial growth of GaSb thin films on Si(100) and GaAs(100) substrates is presented. The growth technique involves the use of atomic Ga and Sb species, which are provided by thermal effusion and radio frequency sputtering, respectively. The crystalline quality of the heteroepitaxial GaSb film on the Si substrate is high despite the larger lattice mismatch. Epitaxial quality is determined by high-resolution x-ray diffraction and Rutherford backscatter spectrometry channeling. Atomic-force microscopy is used to monitor the evolution of surface morphology with increasing film thickness. Transmission electron microscopy shows the formation of stacking faults at the Si/GaSb interface and their eventual annihilation with increasing GaSb film thickness. Annihilation of stacking faults occurs when two next-neighbor mounds meet during the overgrowth of a common adjacent mound.


2007 ◽  
Vol 14 (04) ◽  
pp. 755-759 ◽  
Author(s):  
D. U. LEE ◽  
J. H. JUNG ◽  
T. W. KIM ◽  
H. S. LEE ◽  
H. L. PARK ◽  
...  

CdTe thin films were grown on GaAs (100) substrates by using molecular beam epitaxy at various temperatures. The results of the X-ray diffraction (XRD) patterns showed that the orientation of the grown CdTe thin films was the (100) orientation. XRD patterns, atomic force microscopy images, high-resolution transmission electron microscopy (HRTEM) images, and photoluminescence spectra showed that the crystallinity of CdTe (100) epilayers grown on GaAs (100) substrates was improved by increasing the substrate temperature. HRTEM images showed that misfit dislocations existed at the CdTe / GaAs heterointerface. These results can help improve understanding of the substrate temperature effect on the structural and the optical properties of CdTe (100)/ GaAs (100) heterostructures.


Sign in / Sign up

Export Citation Format

Share Document