Low-Temperature Crystallization of Pb(Zr0.4,Ti0.6)O3 Thin Films by Chemical Solution Deposition

2001 ◽  
Vol 688 ◽  
Author(s):  
Kazunari Maki ◽  
Nobuyuki Soyama ◽  
Kaoru Nagamine ◽  
Satoru Mori ◽  
Katsumi Ogi

AbstractWe studied the crystallization of sol-gel derived Pb(Zr0.4Ti0.6)O3 [PZT(40/60)] thin films at 400 down to 390°C on Pt/SiO2/Si substrates by combination of diol-based solutions and modified film preparation processes. It was found that PZT films could be crystallized at 390°C and that PZT films crystallized at 400°C had microstructures with perovskite-single-phase columnar grains and good ferroelectric characteristics such as switched polarization (2 Pr) of 20 μC/cm2 and relative permittivity (εr) of 740. Next, we evaluated annealing temperature dependence of PZT(40/60) thin films crystallized at 390 to 435°C. The results indicated that (111)-orientation of perovskite phases became weaker, (100)-orientation of those became stronger, and the perovskite grain size increased with decreasing in annealing temperature.

2011 ◽  
Vol 197-198 ◽  
pp. 1781-1784
Author(s):  
Hua Wang ◽  
Jian Li ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Shang Ju Zhou

Intergrowth-superlattice-structured SrBi4Ti4O15–Bi4Ti3O12(SBT–BIT) films prepared on p-Si substrates by sol-gel processing. Synthesized SBT–BIT films exhibit good ferroelectric properties. As the annealing temperature increases from 600°C to 700°C, the remanent polarization Prof SBT–BIT films increases, while the coercive electric field Ecdecreases. SBT–BIT films annealed at 700°C have a Prvalue of 18.9µC/cm2which is higher than that of SBT (16.8µC/cm2) and BIT (14.6µC/cm2), and have the lowest Ecof 142 kV/cm which is almost the same as that of SBT and BIT. The C-V curves of Ag/SBT-BIT/p-Si heterostructures show the clockwise hysteresis loops which reveal the memory effect due to the polarization. The memory window in C-V curve of Ag/SBT-BIT/p-Si is larger than that of Ag/SBT/p-Si heterostructure or Ag/BIT/p-Si heterostructure.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


2021 ◽  
Vol 21 (4) ◽  
pp. 2681-2686
Author(s):  
Nguyen Ngoc Minh ◽  
Bui Van Dan ◽  
Nguyen Duc Minh ◽  
Guus Rijnders ◽  
Ngo Duc Quan

Lead-free Bi0.5K0.5TiO3 (BKT) ferroelectric films were synthesized on Pt/Ti/SiO2/Si substrates via the chemical solution deposition. The influence of the excess potassium on the microstructures and the ferroelectric properties of the films was investigated in detail. The results showed that the BKT films have reached the well-crystallized state in the single-phase perovskite structure with 20 mol.% excess amount of potassium. For this film, the ferroelectric properties of the films were significantly enhanced. The remnant polarization (Pr) and maximum polarization (Pm) reached the highest values of 9.4 μC/cm2 and 32.2 μC/cm2, respectively, under the electric field of 400 kV/cm.


2002 ◽  
Vol 17 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Woong-Chul Shin ◽  
Kyu-Jeong Choi ◽  
Soon-Gil Yoon

Ferroelectric SrBi2Ta2O9 (SBT) thin films and Bi2O3 interfacial layers were depositedonto the Pt/Ti/SiO2/Si substrates via liquid-delivery metalorganic chemical vapordeposition. The SBT films with a 5-nm-thick Bi2O3 interfacial layer were well crystallized without c-axis orientation, even at deposition temperature of 540 °C and showed a stronger (115) orientation than those without a Bi2O3 layer with increasing annealing temperature. The remanent polarizations of SBT films with Bi2O3 interfacial layer were significantly improved in comparison with those without Bi2O3 layer. The remanent polarization (2Pr) and coercive field (Ec) of SBT films without and with aBi2O3 interfacial layer annealed at 750 °C were 12 and 21 μC/cm2 and 60 and38 kV/cm, respectively, at an applied voltage of 5 V.


2000 ◽  
Vol 14 (22n23) ◽  
pp. 801-808 ◽  
Author(s):  
M. RAJENDRAN ◽  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

A novel all-inorganic aqueous sol–gel process has been developed to fabricate LaFeO3 thin films by dip-coating. Stable, positively charged colloidal sol particles of hydrous lanthanum ferrite with an average particle size (Z av ) of 7 nm were prepared and coated onto quartz plates under controlled conditions. The sols have been characterized using photon correlation spectroscopy (PCS) for Z av and size distribution. The redispersible gel was characterized by thermogravimetric and differential thermal analysis (TG-DTA) and also by isothermal heating followed by X-ray diffraction to identify the reaction sequence to form LaFeO 3. The sol–gel films as deposited were X-ray amorphous on heating up to 500°C, partially crystalline at 600°C, fully crystalline and single phase at 650°C and above. These films were continuous, polycrystalline, single phase, had uniform thickness in the range between 180 to 1000 nm, depending on deposition conditions, and showed about 80% optical transmittance. The optical band gap varied from 2.7 to 3.3 eV as a function of the annealing temperature. The refractive index increased with increase in annealing temperature from 1.55 at 500°C to 1.86 at 800°C.


2008 ◽  
Vol 100 (1) ◽  
pp. 285-296 ◽  
Author(s):  
BARBARA MALIC ◽  
MIRA MANDELJC ◽  
GORAN DRAZIC ◽  
MIHA SKARABOT ◽  
IGOR MUSEVIC ◽  
...  

1999 ◽  
Vol 26 (1-4) ◽  
pp. 187-195 ◽  
Author(s):  
Yoshihiro Sawada ◽  
Hideya Kobari ◽  
Yoshimi Sato ◽  
Akira Hashimoto ◽  
Ichiro Koiwa ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Ramadan Shaiboub ◽  
Noor Baa'yah Ibrahim ◽  
Mustaffa Abdullah ◽  
Ftema Abdulhade

NanoparticlesY3−xErxFe5O12(x=0.2, 1.0, and 2.0) thin films were prepared by sol-gel method and treated at 800, 900, and 1000∘C, respectively, for 2 h. The films have single phase garnet structure and the sizes of particles are in the range of 44 to 83 nm. The magnetic measurements show that the saturation magnetization decreased with increasing of Er concentration for all samples treated at different annealing temperatures. The saturation magnetization increased with the particle size due to the enhancement of the surface spin effect. The coercivity initially decreased forx=1.0and then increased forx=2.0with increasing annealing temperature.


2000 ◽  
Vol 623 ◽  
Author(s):  
P.C. Joshi ◽  
M.W. Cole

AbstractWe report on the properties of Ta2O5 thin films prepared by the metalorganic solution deposition (MOSD) technique on Pt-coated Si, n+-Si, and poly-Si substrates. The effects of postdeposition annealing temperature on the structural, electrical, and optical properties were analyzed. The electrical measurements were conducted on MIM and MIS capacitors. The dielectric constant of amorphous Ta2O5 thin films was in the range 29.2-29.5 up to 600°C, while crystalline thin films, annealed in the temperature range 650–750°C, exhibited enhanced dielectric constant in the range 45.6–51.7. The dielectric loss factor did not show any appreciable dependence on the annealing temperature and was in the range 0.006–0.009. The films exhibited high resistivities of the order of 1012–1015 Δ-cm at an applied electric field of 1 MV/cm in the annealing temperature range of 500-750 °C. The temperature coefficient of capacitance was in the range 52-114 ppm/°C for films annealed in the temperature range 500-750°C. The bias stability of capacitance, measured at an applied electric field of 1 MV/cm, was better than 1.41 % for Ta2O5 films annealed up to 750°C.


Sign in / Sign up

Export Citation Format

Share Document