Dielectric and Room Temperature Tunable Properties of Mg-Doped Ba 0.96 Ca 0.04 Ti 0.84Zr 0.16 O3 Thin Films on Pt/MgO

2002 ◽  
Vol 716 ◽  
Author(s):  
T.S. Kalkur ◽  
Woo-Chul Yi ◽  
Elliott Philofsky ◽  
Lee Kammerdiner

AbstractMg- doped Ba0.96 Ca0.04 Ti0.84 Zr0.16 O3 (BCTZ) thin films were fabricated on Pt/MgO substrate by metallorganic decomposition method. The structures of the films were analyzed by x-ray diffraction. The electrical measurements were performed on metal-ferroelectric-metal capacitors with platinum as the top and bottom electrode. The dielectric properties were improved after the capacitors were post annealed at 700 °C in oxygen atmosphere for 30 min. A high dielectric constant of 504 and a dissipation factor of less than 4% was obtained at 1 MHz. The Pt/BCTZ/Pt/MgO capacitors exhibited high tunability of 55% at an applied field of 55 kV/cm.

2002 ◽  
Vol 720 ◽  
Author(s):  
T.S. Kalkur ◽  
Woo-Chul Yi ◽  
Elliott Philofsky ◽  
Lee Kammerdine

AbstractMg- doped Ba0.96 Ca0.04 Ti0.84Zr0.16O3 (BCTZ) thin films were fabricated on Pt/MgO substrate by metallorganic decomposition method. The structure of the films were analyzed by x-ray diffraction. The electrical measurements were performed on metal-ferroelectric-metal capacitors with platinum as the top and bottom electrode. The dielectric properties were improved after the capacitors were post annealed at 700 °C in oxygen atmosphere for 30 min. A high dielectric constant of 504 and a dissipation factor of less than 4% was obtained at 1 MHz. The Pt/BCTZ/Pt/MgO capacitors exhibited high tunability of 55% at an applied field of 55 kV/cm.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2011 ◽  
Vol 399-401 ◽  
pp. 926-929
Author(s):  
Wei Zhang ◽  
Mei Ling Yuan ◽  
Xian Yang Wang ◽  
Jun Ouyang

BaTiO3(BTO) thin films were grown on (100) SrTiO3(STO) single crystal substrates using the RF-magnetron sputtering technique (RFMS) in both pure argon and mixed Ar/O2(20% O2) atmosphere. A La0.5Sr0.5CoO3(LSCO) layer was deposited as the bottom electrode by a 90° off-axis single-target RFMS. θ-2θ X-ray diffraction measurements showed that BTO thin films grown in both cases had a highly preferred c-axis orientation (001). From hysteresis measurements, it was confirmed that both films are ferroelectric. The ferroelectric polarizations 2Pr were 6.6 μC/cm2and 27.1 μC/cm2, for the BTO films grown in pure argon and in mixed Ar/O2atmosphere, respectively.


2010 ◽  
Vol 442 ◽  
pp. 102-108 ◽  
Author(s):  
M.S. Awan ◽  
A.S. Bhatti ◽  
S. Qing ◽  
C.K. Ong

Mn-doped multiferroic BiFeO3 (BFMO) thin films were deposited on LaNiO3(LNO)/SrTiO3(STO)/Si(100) substrates by pulsed laser deposition (PLD) technique. X-ray diffraction (XRD) showed that films were bicrystalline single phase with (110) preferential orientation. Multiferroic top layer and oxide bottom electrode (LNO) epitaxially followed the buffer layer (STO). Oxygen partial pressure during deposition proved to be critical for phase formation, crystallinity and resistivity of the films. Atomic force microscopic (AFM) studies revealed the smooth, dense and crack free surfaces of the films. Cross-section view of the multilayers by field emission scanning electron microscope (FE-SEM) gave their thickness. Mn substitution resulted in the increase of magnetization saturation, coercive field and clarity of hysteresis loop. The magneto-electric (ME) effect was demonstrated by measuring the dielectric response in a varying magnetic field. Optimally deposited BFMO films show saturated P-E loop.


2010 ◽  
Vol 1250 ◽  
Author(s):  
Xinghua Wang ◽  
Sarjoosing Goolaup ◽  
Peng Ren ◽  
Wen Siang Lew

AbstractThin films of magnetite (Fe3O4) are grown on a single-crystal Si/SiO2 (100) substrate with native oxide using DC reactive sputtering technique at room tempreture (RT) and 300C. The x-ray diffraction(XRD) result shows the thermal energy during deposition enhances the crystallization of the Fe3O4 and x-ray photoelectron spectroscopy confirms the film deposited at 300C is single-phase Fe3O4 while the film deposited at RT is mostly ν-Fe2O3. The electrical measurements show that the resistivity of the Fe3O4 film increases exponentially with decreasing temperature, and exhibit a sharp metal-insulator transition at around 100 K, indicating the Verwey transition feature. The saturation magnetization Ms of Fe3O4 film measured by vibrating sample measurement (VSM) at RT was found to be 445 emu/cm3.


2012 ◽  
Vol 557-559 ◽  
pp. 1933-1936
Author(s):  
Ning Yan ◽  
Sheng Hong Yang ◽  
Yue Li Zhang

Pure BiFeO3(BFO) and Bi0.9Nd0.1Fe0.925Mn0.075O3(BNFM) thin films were deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel method. X-ray diffraction analysis showed that all the films were single perovskite structure and a phase transition appeared in Nd–Mn codoped BiFeO3 thin films. Electrical measurements indicated that the ferroelectric properties of BFO thin films were significantly improved by Nd and Mn codoping. BNFM films exhibit a low leakage current and a good P-E hysteresis loop. The remanent polarization (Pr) value of 74μC/cm2has been obtained in BNFM films, while the coercive field (Ec) is 184kV/cm.


1992 ◽  
Vol 279 ◽  
Author(s):  
M. H. Yang ◽  
C. P. Flynn

ABSTRACTWe have studied the epitaxial growth of MgO single crystal thin films by depositing Mg onto MgO substrates in an oxygen atmosphere. This method provides a simple way to dope Mg18O layers uniformly into Mg16O. The well controlled layer thicknesses are suitable for bulk diffusion studies both in the MgO epilayer and the MgO substrate. The MgO growth rate was measured and found to be proportional to the Mg flux and to the square root of oxygen pressure at a given temperature, obeying the law of mass action. High quality MgO single crystal thin films, as indicated by RHEED and x-ray diffraction, were found to grow over u wide temperature range, as in the earlier work1 using e-beam evaporation.


1991 ◽  
Vol 243 ◽  
Author(s):  
M.D. Vaudin ◽  
L.P. Cook ◽  
W. Wong-Ng ◽  
P.K. Schenck ◽  
P.S. Brody ◽  
...  

AbstractThin films of BaTiO3 were deposited on platinum-coated silicon substrates using pulsed laser deposition and characterized using electron microscopy, powder x-ray diffraction and electrical measurements. The microstructure consisted of columnar BaTiO3 grains oriented normal to the substrate. Two preferred orientations were observed, with either the (001) or (111) planes of BaTiO3 being parallel to the substrate. The electrical properties of two films were measured and it was found that the (111) film was ferroelectric and the (001) film was not. Possible reasons for this are discussed.


2021 ◽  
Author(s):  
M. A. Amara ◽  
T. Larbi ◽  
N. Mahdhi ◽  
Faycel saadallah ◽  
M. Amlouk

Abstract Thin films of physical--mixture of Hausmannite Mn3O4 and lithium (Li) are synthesized by spray pyrolysis technique. Structural, morphological, optical, electrical, wettability and photocatalytic properties have been investigated. X-ray diffraction (XRD) and Raman spectra, Scanning electron microscope (SEM) images and electrical measurements show that Li nanoparticles are formed both on top surface of the film and inside grain boundaries. Bandgap and Urbach energies and optical relaxation time have been determined from transmittance T and reflectance R spectra. Impedance spectroscopy shows that charge separation increases with Li content, which improves photocatalytic efficiency of the film. The best photocatalytic efficiency is obtained for Li/Mn ratio of 15%. Indeed, the degradation of methylene blue (MB) under ultraviolet (UV) and visible light exposure, is improved by a factor of 5.7 and 2.4 respectively, when compared to undoped Mn3O4. In addition, this film exhibits a high photostability (10 cycles consecutively) under solar light. On the other hand, hydrophobicity reveals the hydrophilic character of the films.


Sign in / Sign up

Export Citation Format

Share Document