Progress in the Preparation of Aluminum Nitride Substrates from Bulk Crystals

2002 ◽  
Vol 722 ◽  
Author(s):  
J.C. Rojo ◽  
L.J. Schowalter ◽  
Glen Slack ◽  
K. Morgan ◽  
J. Barani ◽  
...  

AbstractLarge (11-mm diameter) single-crystal AlN boules have been prepared using sublimationrecondensation growth. X-ray topography shows that substrates prepared from those boules have a dislocation density of less than 500 cm-2, while the central region of these substrates was nearly dislocation-free. Rocking curves of less than 10 arcsecs have been obtained indicating the high quality of these crystals. The AlN substrates have been used to growth an AlGaN/AlN multiquantum well structure with excellent crystalline quality and with photoluminescence peaked at around 260nm. In addition, a UV LED with emission wavelength at 360nm has been fabricated. This is the first operating opto-electronic device demonstrated on an AlN substrate.

2001 ◽  
Vol 680 ◽  
Author(s):  
J. Carlos Rojo ◽  
Leo J. Schowalter ◽  
Kenneth Morgan ◽  
Doru I. Florescu ◽  
Fred H. Pollak ◽  
...  

ABSTRACTLarge (15mm diameter) single-crystal AlN boules have been prepared using sublimationrecondensation growth. X-ray topography shows that the dislocation density averages less than 103 cm2 in some of the substrates but also that the dislocations are not uniformly distributed. Also, strain due to the differential expansion with the crucible walls seems to cause severe cracking in the periphery of the crystal and high-strain regions. Thermal analysis using the Scanning Thermal Microscopy (SThM) reveals a thermal conductivity of 3.4 ± 0.2 W/K-cm, which is the largest value ever reported for AlN.


2018 ◽  
Vol 51 (4) ◽  
pp. 1043-1049 ◽  
Author(s):  
Zuotao Lei ◽  
Aleksei Kolesnikov ◽  
Anton Vasilenko ◽  
Chongqiang Zhu ◽  
Galina Verozubova ◽  
...  

The results of X-ray transmission topography and diffraction analysis of a ZnGeP2single crystal grown by the vertical Bridgman method in the [001] direction are presented and discussed. The FWHM of rocking curves over a large area of a (100) longitudinal slice is about 12′′, which is indicative of the high quality of the examined sample. Glow discharge mass spectrometry does not show significant content of foreign chemical elements. X-ray topography reveals growth striations and dislocations. The predominant defects are single dislocations and their pile-ups. Near to the growth-axis region, curved dislocation bundles passing through the entire crystal are observed, on which precipitates are formed. In the initial part of the crystal, dislocations are located chaotically, while towards the middle of the sample they are aligned along the growth striae. In the final part of the crystal, the dislocation density increases.


2018 ◽  
Vol 924 ◽  
pp. 923-926 ◽  
Author(s):  
Rafael Dalmau ◽  
H. Spalding Craft ◽  
Jeffrey Britt ◽  
Elizabeth Paisley ◽  
Baxter Moody ◽  
...  

Aluminum nitride (AlN) single crystal boules were grown by physical vapor transport (PVT). Diameter expansion during boule growth, without the introduction of low angle grain boundaries (LAGB) around the boule periphery, was confirmed by crossed polarizer imaging, synchrotron white beam x-ray topography (SWBXT), and synchrotron monochromatic beam x-ray topography (SMBXT). The densities of basal plane dislocations (BPD) and threading edge dislocations (TED) averaged from high-magnification topographs of five regions of a high-quality substrate were 0 cm-2 and 992 cm-2, respectively. Substrates fabricated from AlN boules possessed excellent surface finishes suitable for epitaxy.


2013 ◽  
Vol 740-742 ◽  
pp. 73-76 ◽  
Author(s):  
Motohisa Kado ◽  
Hironori Daikoku ◽  
Hidemitsu Sakamoto ◽  
Hiroshi Suzuki ◽  
Takeshi Bessho ◽  
...  

In this study, we have investigated the rate-limiting process of 4H-SiC solution growth using Si-Cr based melt, and have tried high-speed growth. It is revealed that the rate-limiting process of SiC growth under our experimental condition is interface kinetics, which can be controlled by such factors as temperature and supersaturation of carbon. By enhancing the interface kinetics, SiC crystal has been grown at a high rate of 2 mm/h. The FWHM values of X-ray rocking curves and threading dislocation density of the grown crystals are almost the same as those of seed crystal. Possibility of high-speed and high-quality growth of 4H-SiC has been indicated.


Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


Author(s):  
E. Brambrink ◽  
S. Baton ◽  
M. Koenig ◽  
R. Yurchak ◽  
N. Bidaut ◽  
...  

We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths. Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.


2003 ◽  
Vol 18 (6) ◽  
pp. 1471-1473 ◽  
Author(s):  
Yukio Takahashi ◽  
Kouichi Hayashi ◽  
Kimio Wakoh ◽  
Naomi Nishiki ◽  
Eiichiro Matsubara

Laboratory x-ray fluorescence holography equipment was developed. A single-bent graphite monochromator with a large curvature and a high-count-rate x-ray detection system were applied in this equipment. To evaluate the performance of this equipment, a hologram pattern of a gold single crystal was measured. It took two days, which was about one-third the time required for the previous measurements using the conventional x-ray source and several times that using the synchrotron source. The quality of the hologram pattern is as good as that obtained using the synchrotrons. Clear atomic images on (002) are reconstructed.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


2017 ◽  
Vol 24 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Sergey Terentyev ◽  
Maxim Polikarpov ◽  
Irina Snigireva ◽  
Marco Di Michiel ◽  
Sergey Zholudev ◽  
...  

Linear parabolic diamond refractive lenses are presented, designed to withstand high thermal and radiation loads coming from upgraded accelerator X-ray sources. Lenses were manufactured by picosecond laser treatment of a high-quality single-crystal synthetic diamond. Twelve lenses with radius of curvature at parabola apex R = 200 µm, geometrical aperture A = 900 µm and length L = 1.5 mm were stacked as a compound refractive lens and tested at the ESRF ID06 beamline. A focal spot of size 2.2 µm and a gain of 20 were measured at 8 keV. The lens profile and surface quality were estimated by grating interferometry and X-ray radiography. In addition, the influence of X-ray glitches on the focusing properties of the compound refractive lens were studied.


Sign in / Sign up

Export Citation Format

Share Document