FIB-assisted Pt Deposition for Carbon Nanotube Integration and 3-D Nanoengineering

2002 ◽  
Vol 739 ◽  
Author(s):  
K. Dovidenko ◽  
J. Rullan ◽  
R. Moore ◽  
K. A. Dunn ◽  
R. E. Geer ◽  
...  

ABSTRACTIn this study, the Focused Ion Beam (FIB) instrument has been used for carbon nanotubes integration and nanoegineering studies. Results of thorough investigation (electrical, structural and chemical) of ultra-thin Pt contact lines and pads fabricated by the FIB, along with evaluation of nanomodification of the carbon nanotubes under the Ga+ ion beam and during Pt deposition are presented. The initial stages of FIB-assisted Pt deposition on multi-wall nanotubes are studied by transmission electron microscopy (TEM). The FIB parameters are optimized to provide non-destructive imaging and controllable Pt deposition with minimal damage on the nanotubes. We have demonstrated effective use of FIB-fabricated Pt pads as means of attaching the nanotubes to the substrate for atomic force and ultrasonic force microscopy studies.

1998 ◽  
Vol 536 ◽  
Author(s):  
R. A. Zuhr ◽  
J. D. Budai ◽  
P. G. Datskos ◽  
A. Meldrum ◽  
K. A. Thomas ◽  
...  

AbstractAmorphous, polycrystalline, and single crystal nanometer dimension particles can be formed in a variety of substrates by ion implantation and subsequent annealing. Such composite colloidal materials exhibit unique optical properties that could be useful in optical devices, switches, and waveguides. However colloids formed by blanket implantation are not uniform in size due to the nonuniform density of the implant, resulting in diminution of the size dependent optical properties. The object of the present work is to form more uniform size particles arranged in a 2-dimensional lattice by using a finely focused ion beam to implant identical ion doses only into nanometer size regions located at each point of a rectangular lattice. Initial work is being done with a 30 keV Ga beam implanted into Si. Results of particle formation as a function of implant conditions as analyzed by Rutherford backscattering, x-ray analysis, atomic force microscopy, and both scanning and transmission electron microscopy will be presented and discussed.


2004 ◽  
Vol 841 ◽  
Author(s):  
J.-M. Solletti ◽  
M. Parlinska-Wojtan ◽  
J. Tharian ◽  
K. Wasmer ◽  
J. Michler ◽  
...  

ABSTRACTNanoscratching on GaAs (001) by a pyramidal diamond tip (Berkovitch) indenter has been carried on under different loads, scratching velocities and directions. Plastic deformation and fractures induced by scratching have been investigated by atomic force microscopy (AFM), and by scanning and transmission electron microscopy (SEM and TEM, respectively). Surface images revealed radial and surface tensile cracks. Focused ion beam (FIB) milling of the contact area revealed median and shear fracture distribution in the volume. The different cracks were characterized for various scratching conditions in terms of their direction of propagation, extension and frequencies. Plastic deformations have been characterized by vertical displacement of material. No purely ductile zone was observed, GaAs deformation occurred by fractures and plastic strain. Their preponderances are discussed in terms of material properties.


2012 ◽  
Vol 1421 ◽  
Author(s):  
Russell J. Bailey ◽  
Remco Geurts ◽  
Debbie J. Stokes ◽  
Frank de Jong ◽  
Asa H. Barber

ABSTRACTThe mechanical behavior of nanocomposites is critically dependent on their structural composition. In this paper we use Focused Ion Beam (FIB) microscopy to prepare surfaces from a layered polymer nanocomposite for investigation using phase contrast atomic force microscopy (AFM). Phase contrast AFM provides mechanical information on the surface examined and, by combining with the sequential cross-sectioning of FIB, can extend the phase contract AFM into three dimensions.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Hao Wang ◽  
Greg C. Hartman ◽  
Joshua Williams ◽  
Jennifer L. Gray

AbstractThere are many factors that have the potential to limit significant advances in device technology. These include the ability to arrange materials at shrinking dimensions and the ability to successfully integrate new materials with better properties or new functionalities. To overcome these limitations, the development of advanced processing methods that can organize various combinations of materials at nano-scale dimensions with the necessary quality and reliability is required. We have explored using a gallium focused ion beam (FIB) as a method of integrating highly mismatched materials with silicon by creating template patterns directly on Si with nanoscale resolution. These templates are potentially useful as a means of locally controlling topography at nanoscale dimensions or as a means of locally implanting Ga at specific surface sites. We have annealed these templates in vacuum to study the effects of ion dosage on local Ga concentration and topography. We have also investigated the feasibility of creating Ga nanodots using this method that could eventually be converted to GaN through a nitridation process. Atomic force microscopy and electron microscopy characterization of the resulting structures are shown for a variety of patterning and processing conditions.


1999 ◽  
Vol 562 ◽  
Author(s):  
Stephan Grunow ◽  
Deda Diatezua ◽  
Soon-Cheon Seo ◽  
Timothy Stoner ◽  
Alain E. KaloyerosI

ABSTRACTAs computer chip technologies evolve from aluminum-based metallization schemes to their copper-based counterparts, Electrochemical Deposition (ECD) is emerging as a viable deposition technique for copper (Cu) interconnects. This paper presents the results of a first-pass study to examine the underlying mechanisms that control ECD Cu nucleation, growth kinetics, and post-deposition microstructure evolution (self-annealing), leading to the development and optimization of an ECD Cu process recipe for sub-quarter-micron device generations. The influence of bath composition, current waveform, type and texture of Cu seed layer, and device feature size (scaling effect) on the evolution of film texture, morphology, electrical properties, and fill characteristics was investigated using a manufacturing-worthy ReynoldsTech 8″ wafer plating tool. Resulting films were analyzed by X-ray Diffraction (XRD), four-point resistivity probe, Focused-Ion-Beam Scanning Electron Microscopy (FIB-SEM), and Atomic Force Microscopy (AFM). These investigations identified an optimized process window for the complete fill of aggressive device structures with pure Cu with resistivity ∼ 2.0 μΩ-cm and smooth surface morphology.


1995 ◽  
Vol 380 ◽  
Author(s):  
C. Deng ◽  
J. C. Wu ◽  
C. J. Barbero ◽  
T. W. Sigmon ◽  
M. N. Wybourne

ABSTRACTA fabrication process for sub-100 nm Ge wires on Si substrates is reported for the first time. Wires with a cross section of 6 × 57 nm2 are demonstrated. The wire structures are analyzed by atomic force (AFM), scanning electron (SEM), and transmission electron microscopy (TEM). Sample preparation for TEM is performed using a novel technique using both pre and in situ deposition of multiple protection layers using a Focused Ion Beam (FIB) micromachining system.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1493 ◽  
Author(s):  
Tan Sui ◽  
Jiří Dluhoš ◽  
Tao Li ◽  
Kaiyang Zeng ◽  
Adrian Cernescu ◽  
...  

Peritubular dentine (PTD) and intertubular dentine (ITD) were investigated by 3D correlative Focused Ion Beam (FIB)-Scanning Electron Microscopy (SEM)-Energy Dispersive Spectroscopy (EDS) tomography, tapping mode Atomic Force Microscopy (AFM) and scattering-type Scanning Near-Field Optical Microscopy (s-SNOM) mapping. The brighter appearance of PTD in 3D SEM-Backscattered-Electron (BSE) imaging mode and the corresponding higher grey value indicate a greater mineral concentration in PTD (~160) compared to ITD (~152). However, the 3D FIB-SEM-EDS reconstruction and high resolution, quantitative 2D map of the Ca/P ratio (~1.8) fail to distinguish between PTD and ITD. This has been further confirmed using nanoscale 2D AFM map, which clearly visualised biopolymers and hydroxyapatite (HAp) crystallites with larger mean crystallite size in ITD (32 ± 8 nm) than that in PTD (22 ± 3 nm). Correlative microscopy reveals that the principal difference between PTD and ITD arises primarily from the nanoscale packing density of the crystallites bonded together by thin biopolymer, with moderate contribution from the chemical composition difference. The structural difference results in the mechanical properties variation that is described by the parabolic stiffness-volume fraction correlation function introduced here. The obtained results benefit a microstructure-based mechano-chemical model to simulate the chemical etching process that can occur in human dental caries and some of its treatments.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 717 ◽  
Author(s):  
Wenbo Xin ◽  
Joseph Severino ◽  
Arie Venkert ◽  
Hang Yu ◽  
Daniel Knorr ◽  
...  

In this report, networks of carbon nanotubes (CNTs) are transformed into composite yarns by infusion, mechanical consolidation and polymerization of dicyclopentadiene (DCPD). The microstructures of the CNT yarn and its composite are characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and a focused ion beam used for cross-sectioning. Pristine yarns have tensile strength, modulus and elongation at failure of 0.8 GPa, 14 GPa and 14.0%, respectively. In the composite yarn, these values are significantly enhanced to 1.2 GPa, 68 GPa and 3.4%, respectively. Owing to the consolidation and alignment improvement, its electrical conductivity was increased from 1.0 × 105 S/m (raw yarn) to 5.0 × 105 S/m and 5.3 × 105 S/m for twisted yarn and composite yarn, respectively. The strengthening mechanism is attributed to the binding of the DCPD polymer, which acts as a capstan and increases frictional forces within the nanotube bundles, making it more difficult to pull them apart.


Sign in / Sign up

Export Citation Format

Share Document