Characteristics of Bottom Gate Thin Film Transistors with Silicon rich poly-Si1-xGex and poly-Si fabricated by Reactive Thermal Chemical Vapor Deposition

2003 ◽  
Vol 762 ◽  
Author(s):  
Kousaku Shimizu ◽  
JianJun Zhang ◽  
Jeong-Woo Lee ◽  
Jun-ichi Hanna

AbstractIn the fabrication of thin film transistors (TFTs), little attention has been paid to the polycrystalline silicon thin films prepared at low temperatures where the glass substrates are adopted so far. Since the film quality is not sufficient to achieve high mobility, e.g., over 50 cm2/Vs in spite of high benefit in their industrial fabrication. We have fabricated bottom gate TFTs with poly-Si and poly- Si1-xGex thin films deposited at 450°C by newly developed low-temperature LPCVD technique and characterized electrical characteristics of the TFTs: disilane and a small amount of either germanium tetrafluoride or fluorine were used as material gases and helium as carrier gas. Thermal annealing for dopant activation and atomic hydrogen treatment for defect passivation were carried out. We found that the defect elimination process is important for improving TFT performance significantly. Finally the mobility of p-channel and n-channel TFTs have attained 36.3-54.4 cm2/Vs and 57 cm2/Vs, respectively.

2011 ◽  
Vol 221 ◽  
pp. 117-122
Author(s):  
Ying Ge Li ◽  
Dong Xing Du

Thin film Amorphous Silicon materials have found wide application in photovoltaic industry. In this paper, thin layers (around 300nm) of intrinsic hydrogenated amorphous silicon (a-Si:H) are fabricated on glass (Corning Eagle2000TM) substrates by employing plasma enhanced chemical vapor deposition (PECVD) system with gas sources of silane and hydrogen. The deposited thin films are proven to be material of amorphous silicon by Raman spectroscopy measurement and their electronic transport properties are thoroughly characterized in terms of photoconductivity, dark conductivity and photo response. The effect of Hydrogen dilution on electrical properties are investigated for a-Si:H thin films deposited in the temperatures range of 150~200°C. Results indicate that a-Si:H thin films on glass substrate owns device-quality electrical properties and could be applied on fabricating thin film solar cells as the absorber layer material and on other photovoltaic or photo electronic devices.


2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


2018 ◽  
Vol 6 (37) ◽  
pp. 9981-9989 ◽  
Author(s):  
Nikhil Nikhil ◽  
Rajiv K. Pandey ◽  
Praveen Kumar Sahu ◽  
Manish Kumar Singh ◽  
Rajiv Prakash

Successful practical application of a polymer or its nanocomposite depends on the ability to produce a high performance electronic device at a significantly lesser cost and time than those needed to manufacture conventional devices.


2012 ◽  
Vol 198-199 ◽  
pp. 28-31
Author(s):  
Chun Ya Li ◽  
Xi Feng Li ◽  
Long Long Chen ◽  
Ji Feng Shi ◽  
Jian Hua Zhang

Under different growth conditions, silicon Oxide (SiOx) thin films were deposited successfully on Si (100) substrates and glass substrates by plasma enhanced chemical vapor deposition (PECVD). The thickness, refractive index and growth rate of the thin films were tested by ellipsometer. The effects of deposition temperature on the structure and properties of SiOx films were studied using X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. The results show that the SiOx films were amorphous at different deposition temperature. The peaks of Si2p and O1s shifted to higher binding energy with temperature increasing. The SiOx films had high transmissivity at the range of 400-900nm. By analyzing the observation and data, the influence of deposition parameters on the electrical properties and interface characteristics of SiOx thin film prepared by PECVD is systematically discussed. At last, SiOx thin film with excellent electrical properties and good interface characteristic is prepared under the relatively optimum parameters.


1991 ◽  
Vol 30 (Part 1, No. 12B) ◽  
pp. 3704-3709 ◽  
Author(s):  
Kazuhiro Shimizu ◽  
Hideki Hosoya ◽  
Osamu Sugiura ◽  
Masakiyo Matsumura

2007 ◽  
Vol 28 (5) ◽  
pp. 395-397 ◽  
Author(s):  
Yuta Sugawara ◽  
Yukiharu Uraoka ◽  
Hiroshi Yano ◽  
Tomoaki Hatayama ◽  
Takashi Fuyuki ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1295
Author(s):  
Dae-Hwan Kim ◽  
Hyun-Seok Cha ◽  
Hwan-Seok Jeong ◽  
Seong-Hyun Hwang ◽  
Hyuck-In Kwon

Herein, we investigated the effects of active layer thickness (tS) on the electrical characteristics and stability of high-mobility indium–gallium–tin oxide (IGTO) thin-film transistors (TFTs). IGTO TFTs, with tS values of 7 nm, 15 nm, 25 nm, 35 nm, and 50 nm, were prepared for this analysis. The drain current was only slightly modulated by the gate-to-source voltage, in the case of the IGTO TFT with tS = 50 nm. Under positive bias stress (PBS), the electrical stability of the IGTO TFTs with a tS less than 35 nm improved as the tS increased. However, the negative bias illumination stress (NBIS) stability of these IGTO TFTs deteriorated as the tS increased. To explain these phenomena, we compared the O1s spectra of IGTO thin films with different tS values, acquired using X-ray photoelectron spectroscopy. The characterization results revealed that the better PBS stability, and the low NBIS stability, of the IGTO TFTs with thicker active layers were mainly due to a decrease in the number of hydroxyl groups and an increase in the number of oxygen vacancies in the IGTO thin films with an increase in tS, respectively. Among the IGTO TFTs with different tS, the IGTO TFT with a 15-nm thick active layer exhibited the best electrical characteristics with a field-effect mobility (µFE) of 26.5 cm2/V·s, a subthreshold swing (SS) of 0.16 V/dec, and a threshold voltage (VTH) of 0.3 V. Moreover, the device exhibited robust stability under PBS (ΔVTH = 0.9 V) and NBIS (ΔVTH = −1.87 V).


Sign in / Sign up

Export Citation Format

Share Document