Forkation and Oxidation of Titanium Silicide

1986 ◽  
Vol 77 ◽  
Author(s):  
Tzuen-Luh Huang ◽  
Shuit-Tong Lee

ABSTRACTRefractory metal suicides have been used widely in VLSI fabrication, owing to their low resistivity, high-temperature compatibility, and oxidiz-ability. In this work, we have studied the titanium suicide formation, using a rapid thermal processor (RTP). Isothermal and isochronal sintering experiments were carried out to determine the appropriate process steps. The selective etch of the unreacted Ti was characterized. The sintered films were characterized by four-point probe, X-ray diffraction, and Auger electron spectroscopy. We also studied the oxidation at 800–1000°C of Ti suicide formed by sintering Ti and polycrystalline silicon using a RTP in N2 ambient. The oxidation results of Ti suicide formed using RTP in N2 ambient are compared with those formed using furnace sintering in vacuum/argon ambient and those deposited by cosputtering.

1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1989 ◽  
Vol 4 (6) ◽  
pp. 1320-1325 ◽  
Author(s):  
Q. X. Jia ◽  
W. A. Anderson

Effects of hydrofluoric acid (HF) treatment on the properties of Y–Ba–Cu–O oxides were investigated. No obvious etching of bulk Y–Ba–Cu–O and no degradation of zero resistance temperature were observed even though the oxides were placed into 49% HF solution for up to 20 h. Surface passivation of Y–Ba–Cu–O due to HF immersion was verified by subsequent immersion of Y–Ba–Cu–O in water. A thin layer of amorphous fluoride formed on the surface of the Y–Ba–Cu–O during HF treatment, which limited further reaction between Y–Ba–Cu–O and HF, and later reaction with water. Thin film Y–Ba–Cu–O was passivated by HF vapors and showed no degradation in Tc-zero after 30 min immersion in water. The properties of the surface layer of Y–Ba–Cu–O oxide after HF treatment are reported from Auger electron spectroscopy, x-ray diffraction, and scanning electron microscopy studies.


1992 ◽  
Vol 15 (1) ◽  
pp. 9-26 ◽  
Author(s):  
C. Nobili ◽  
F. Nava ◽  
G. Ottaviani ◽  
M. Costato ◽  
G. De Santi ◽  
...  

In-situ resistivity vs. temperature, Rutherford backscattering spectrometry, Auger electron spectroscopy and X-ray diffraction measurements have been performed in order to study the effects arising from the presence of oxygen in the annealing ambient on the integrity of amorphous films of TiSix, with x ranging from 1.45 to 2.1. Crystalisation occurs around 400 C. The presence of oxygen produces the formation of silicon and titanium oxide around 500 C. Critical analysis of the experimental results have indicated that metal oxidation is inhibited when an excess of silicon is present, which suggests the use of a sputtered Si coating cap as a medium capable of effectively decoupling the silicide film from oxygen. This avoids unwanted Ti oxidation even in heavily oxygen contaminated ambients up to the highest temperatures used for the formation of low resistivity titanium disilicide.


1994 ◽  
Vol 363 ◽  
Author(s):  
Y. W. Bae ◽  
W. Y. Lee ◽  
T. M. Besmann ◽  
P. J. Blau ◽  
K. L. More ◽  
...  

AbstractComposite coatings consisting of discrete phases of TiN and MoS2 were codeposited on graphite substrates from Ti((CH3)2N)4/NH3/MoF6/H2S gas mixtures in a cold-wall reactor at 1073 K and 1.3 kPa. Chemical composition and microstructure of the coatings were characterized by Auger electron spectroscopy, X-ray diffraction, and transmission electron microscopy. Kinetic friction coefficients of the coatings were determined by a computer-controlled friction microprobe and values less than 0.2 were obtained with a type-440C stainless-steel counterface under ambient condition.


2010 ◽  
Vol 297-301 ◽  
pp. 88-92 ◽  
Author(s):  
R. Gheriani ◽  
Rachid Halimi

Titanium carbides are well known materials with great scientific and technological interest. The applications of these materials take advantage of the fact that they are very hard, refractory and that they have metallic properties. In this work, we have studied the influence of the heat treatment temperatures (400-1000°C) on the interaction between the titanium thin films and steel substrates. Steel substrates, 100C6 type (AFNOR norms) containing approximately 1 wt % of carbon were coated at 200°C with titanium thin films by magnetron sputtering. The samples were characterized by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Vikers micro-hardness measurements carried out on the annealed samples showed that the micro-hardness increases with annealing temperature, reaches a maximum (3500 kg/mm2), then decreases progressively. The growth of micro-hardness is due to the diffusion of the carbon, and to the formation of titanium carbide. However, the decrease of micro-hardness is associated with the diffusion of iron and the formation of iron oxide (Fe2O3). At higher temperatures, we note the formation of titanium dioxide (TiO2).


2001 ◽  
Vol 689 ◽  
Author(s):  
Chandana Meegoda ◽  
Yu. Paderno ◽  
Michael Trenary

ABSTRACTSurface oxides present on polycrystalline MgB2 were characterized by high-resolution x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). X-ray diffraction (XRD) measurements were used to determine the MgB2 phases. XRD line broadening analysis reveals a grain size of 40 nm. XPS results show that MgO and B2O3 are the major surface oxides. Auger spectra provide further evidence of the presence of MgO. The B 1s and Mg 2p peaks have been used to quantify the amount of the surface oxides.


Sign in / Sign up

Export Citation Format

Share Document