Application of Field-Enhanced Rapid Thermal Annealing to Activation of Doped Polycrystalline Si Thin Films

2005 ◽  
Vol 862 ◽  
Author(s):  
B.S. So ◽  
Y.H. You ◽  
H.J. Kim ◽  
Y.H. Kim ◽  
J.H. Hwang ◽  
...  

AbstractActivation of polycrystalline silicon (poly-Si) thin films doped as n-type using selective ion implantation of phosphorous was performed employing field-enhanced rapid thermal annealing where rapid thermal annealing of halogen lamps is combined with alternating magnetic fields. The ion activation was evaluated using Hall effect measurements incorporating the resistivity, the charge carrier concentration, and the mobility. Statistical design of experiments is attempted in order to clarify the effects and interactions of processes variables on field-enhanced rapid thermal annealing towards ion activation: the three processing variables are furnace temperature, power of halogen lamp, and the alternating magnetic field. Hall effect measurements indicate that the furnace temperature and RTA power are found to be dominant in activating the doped polycrystalline Si in dose. The activation process results from the competition between charge carrier concentration and mobility: the increase in mobility is larger than the decrease in charge carrier concentration.

2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Kumar ◽  
P.I. Widenborg ◽  
H. Hidayat ◽  
Qiu Zixuan ◽  
A.G. Aberle

ABSTRACTThe effect of the rapid thermal annealing (RTA) and hydrogenation step on the electronic properties of the n+ and p+ solid phase crystallized (SPC) poly-crystalline silicon (poly-Si) thin films was investigated using Hall effect measurements and four-point-probe measurements. Both the RTA and hydrogenation step were found to affect the electronic properties of doped poly-Si thin films. The RTA step was found to have the largest impact on the dopant activation and majority carrier mobility of the p+ SPC poly-Si thin films. A very high Hall mobility of 71 cm2/Vs for n+ poly-Si and 35 cm2/Vs for p+ poly-Si at the carrier concentration of 2×1019 cm-3 and 4.5×1019 cm-3, respectively, were obtained.


2019 ◽  
Vol 14 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. S. Bashar ◽  
Rummana Matin ◽  
Munira Sultana ◽  
Ayesha Siddika ◽  
M. Rahaman ◽  
...  

AbstractThe ZnS thin films have been deposited by radio frequency magnetron sputtering at room temperature. Post-deposition rapid thermal annealing treatment was done for the films deposited at different powers ranging from 70 to 100 W. One peak is observed for as-deposited and annealed thin films at around 28.48° corresponding to the (111) reflection plane indicating a zincblende structure. The overall intensity of the peaks and the FWHM values of as-deposited films increased after annealing corresponding to the increase in crystallinity. The optical energy bandgap is found in the range of 3.24–3.32 eV. With increasing annealing temperature, the decrease in the Urbach energy values indicating a decrease in localized states which is in good agreement with the XRD results where the crystallinity increased. The surface morphology of the films seems to be composed of Nano-granules with a compact arrangement. Apparently, the grain size increases in the deposited films as annealing temperature increases. The compositional ratio attained close to the stoichiometric ratio of 1:1 after annealing. From the Hall effect measurement, the carrier concentration and mobility are found to increase after annealing. The high carrier concentration and mobility also comply with structural and optical analysis. Best results are found for the film annealed at 400 °C deposited at 90 W.


1991 ◽  
Vol 15 (3) ◽  
pp. 355-360 ◽  
Author(s):  
H Glückler ◽  
Ch Niedermayer ◽  
G Nowitzke ◽  
E Recknagel ◽  
J Erxmeyer ◽  
...  

1987 ◽  
Vol 106 ◽  
Author(s):  
M. Takai ◽  
M. Izumi ◽  
T. Yamamoto ◽  
A. Kinomura ◽  
K. Gamo ◽  
...  

ABSTRACTDiffusion of arsenic implanted in poly-silicon on insulator structures after furnace and rapid thermal annealing (RTA) has been investigated by Rutherford backscattering (RBS) and Hall effect measurements. The diffusivity for As in poly–Si on insulator is represented by D = 3.12 × 104 exp (− 3.86/kT) cm/sec for the tail region after both RTA and furnace annealing and D = 34.0 exp (− 3.42/kT) cm2/sec for the peak region after RTA. Poly–Si layers after implantation and annealing were found to have tensile stresses of 3.0 – 4.0 kbar.


2015 ◽  
Vol 1131 ◽  
pp. 39-42
Author(s):  
Narin Tammarugwattana ◽  
Kitipong Mano ◽  
Chaloempol Saributr ◽  
Adirek Rangkasikorn ◽  
Navaphun Kayunkid ◽  
...  

Tin-doped nickel phthalocyanine thin films (Sn-doped NiPc) were deposited by thermal co-evaporation method. Doping concentration of tin in NiPc was controlled via different deposition rates between metal dopent and host organic material. Properties of the thin films doped by tin in the range of 3 to 15% were characterized by atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), UV-Visible spectroscopy and X-ray photoelectron spectroscopy (XPS). Furthermore, electrical properties of Al/Sn-doped-NiPc/ITO devices i.e. charge carrier concentration and carrier mobility were characterized by current-voltage and capacitance-voltage measurements. Microscopic results show clear evidence of the morphological transition from granular structure in undoped-film to rod-liked structure in the films doped more than 5%. Moreover, surface grain size exhibits the tendency to decrease with the increase of doping concentration. Optical properties reveal that the packing of NiPc molecules in all doping conditions is the combination of α-phase (majority) and β-phase (minority). However, evolution of β-phase NiPc is observed with the increase of doping concentration. Photoelectron analyses indicate shift of binding energy in both Ni2p and Sn3d levels corresponding to charge transfer between nickel-core and tin dopant. In addition, the electrical properties show the enhancement of the film’s conductivity due to the increase of charge carrier concentration with the higher Sn-doping level.


2016 ◽  
Vol 848 ◽  
pp. 95-98
Author(s):  
Narin Tammarugwattana ◽  
Kitipong Mano ◽  
Kraisak Watthanarungsarit ◽  
Adirek Rangkasikorn ◽  
Navaphun Kayunkid ◽  
...  

The objective of this work is to investigate the optical and electrical properties of bismuth-doped nickel-phthalocyanine thin films (Bi-doped NiPc). The doped films were prepared by thermal co-evaporation as a function of Bi concentration. The amount of Bi in NiPc was controlled via different deposition rates between metal dopant and organic host. The optical properties of the hybrid films were characterized by spectroscopic techniques. Furthermore, the electrical properties e.g. charge carrier concentration and carrier mobility of Al/Bi-doped-NiPc/ITO devices were characterized by current-voltage and capacitance-voltage measurements. The results of optical properties suggest that the crystalline packing of NiPc molecules in all preparation conditions is a combination of α-phase (majority) and β-phase (minority). However, the evolution of β-phase NiPc is observed with the increase of metal doping concentration. Raman spectroscopic results reveal that there is no chemical bond taken place between Bi and NiPc. In addition, with increasing dopant concentration, electrical properties present the enhancement of conducting current of hybrid devices as result from the increment of both charge carrier concentration and charge carrier mobility.


1991 ◽  
Vol 224 ◽  
Author(s):  
John L. Altrip ◽  
Alan G.R. Evans ◽  
Nigel D. Young ◽  
John R. Logan

AbstractThe electrical activation of As implanted Si has been investigated on rapid thermal annealing timescales using sheet resistance, spreading resistance and Hall Effect techniques. For high dose implants (>1015 As cm-2) differential Hall Effect and spreading resistance profiles confirm the existence of a temperature dependent electrical solubility limit. However for low dose implants, annealing schedules chosen such that the electrical solubility limit is not exceeded reveal electrical deactivation which is not accounted for in the clustering theory. Hall Effect measurements performed as a function of temperature have enabled us to reveal directly electrically inactive As which is not observable at room temperature using standard electrical techniques. The results indicate that As atoms in Si introduce deep trapping levels within the bandgap which are responsible forremoving As from the conduction process at room temperature. This temperature activated process is characterized with an activation energy of 0.4eV.


Sign in / Sign up

Export Citation Format

Share Document