Nanocrystalline Si Films and Devices Produced Using Chemical Annealing with Helium

2005 ◽  
Vol 862 ◽  
Author(s):  
Nanlin Wang ◽  
Vikram L. Dalal

AbstractWe report on growth of nanocrystalline Si:H films and devices using a layer-by-layer growth technique, where the growth of a thin amorphous layer by PECVD is followed by chemical annealing in a Helium plasma. The films and devices were grown using a remote, low pressure ECR plasma process. It was found that the structure of the films grown using the layerby-layer technique depended critically upon whether the annealing was done with hydrogen or helium, and the time taken to do the annealing. When the annealing was done in a hydrogen plasma, the films remained amorphous; in contrast, when the annealing was done in helium, and the annealing time was increased to 20 seconds from 10 seconds, the films became crystalline. The crystallinity of the films was confirmed using Raman spectroscopy and x-ray diffraction. The result obtained here shows that it is not necessary to have a high hydrogen dilution to obtain nanocrystalline films. Rather, the amount of hydrogen already present in an amorphous film is enough to cause crystallization, provided that enough ion flux and perhaps energy are available for converting the amorphous structure to a crystalline structure. Proof - of - concept p+nn+ junction devices were fabricated in these chemically annealed materials, and they showed classical nanocrystalline Si solar cell type behavior.

2010 ◽  
Vol 1245 ◽  
Author(s):  
Vikram Dalal ◽  
Ashutosh Shyam ◽  
Dan Congreve ◽  
Max Noack

AbstractWe report on the growth and properties of novel amorphous Silicon (a-Si:H) p-i-n devices prepared using chemical annealing with argon gas. The i layer in the p-i-n devices was grown using a layer by layer approach, where the growth of a very thin a-Si:H layer (7-30 angstroms) grown using a silane:argon mixture was followed by chemical anneal by argon ions. Repeated cycling of such growth/anneal cycles was used to produce the desired total thickness of the i layer. The thickness of the a-Si layer, and duration of the anneal time, were varied systematically. Pressure and power of the plasma discharge were also systematically varied. It was found that a thin a-Si layer, <10 angstroms, and low pressures which led to relatively high ion flux on the surface, gave rise to a significantly smaller bandgap in the device, as indicated by a significant lateral shift in the quantum efficiency vs. photon energy curve to lower energies. The smallest Tauc gap observed was in the range of 1.62 eV. Corresponding to this smaller bandgap, the current in the solar cell increased, and the voltage decreased. The Urbach energies of the valence band tail were also measured in the device, using the quantum efficiency vs. energy curve, and found to be in the range of45 meV, indicating high quality devices. Too much ion bombardment led to an increase in Urbach energy, and an increase in defect density in the material. Raman spectra of the device i layer indicated an amorphous structure. When hydrogen was added to argon during the annealing cycle, some materials turned microcrystalline, as indicated by the Raman spectrum, and confirmed using x-ray diffraction.


1992 ◽  
Vol 281 ◽  
Author(s):  
T. D. Moustakas ◽  
R. J. Molnar

ABSTRACTWe report on growth, doping, and characterization studies of GaN films produced by the Electron Cyclotron Resonance microwave plasma assisted Molecular Beam Epitaxy. The films were grown heteroepitaxially on sapphire (0001), whose surface was converted into atomically smooth AIN by plasma nitridation. The GaN films were grown in two temperature steps, a process found to promote the layer-by-layer growth mode. ECR plasma conditions to grow either n-type autodoped or semi-insulating GaN film were identified. The structure and microstructure as well as the electrical properties of these two classes of films are discussed. A systematic dependence between electron mobility and net carrier concentration was found, which predicts that the mobility of GaN with a net carrier concentration of 1014cm−3 is about 104cm2 /V.s. The insulating films were intentionally doped either p-type or n-type by incorporation of Mg or Si during film growth. Hole or electron concentrations at 300K between 1018-1019cm−3 have been obtained without requiring any post-growth treatment.


1993 ◽  
Vol 297 ◽  
Author(s):  
Tetsuya Akasaka ◽  
Yuhzo Araki ◽  
Isamu Shimizu

The growth of polycrystalline silicon thin films fabricated from fluorinated precursors SiFnHm (n+m≤3) on SiO 2 substrates was examined in detail by real time ellipsometry. The volume fraction of crystal in the film was within 50 vol.% on the average when it was grown continuously on glass. A low density amorphous layer of 300Å thick was formed in the early stage of the growth. The crystallinity, however, was improved with an increase in accumulated film thickness. The layer-by-layer technique of alternating the deposition of very thin film and the exposure to hydrogen plasma was effective on the promotion of crystallization. Optimal conditions of both the deposition and hydrogen plasma treatments were also established by in situ ellipsometry.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2479
Author(s):  
Stefano Rossi ◽  
Luciana Volgare ◽  
Carine Perrin-Pellegrino ◽  
Carine Chassigneux ◽  
Erick Dousset ◽  
...  

Surface treatments are considered as a good alternative to increase biocompatibility and the lifetime of Ti-based alloys used for implants in the human body. The present research reports the comparison of bare and modified Ti6Al4V substrates on hydrophilicity and corrosion resistance properties in body fluid environment at 37 °C. Several surface treatments were conducted separately to obtain either a porous oxide layer using nanostructuration (N) in ethylene glycol containing fluoride solution, or bulk oxide thin films through heat treatment at 450 °C for 3 h (HT), or electrochemical oxidation at 1 V for 3 h (EO), as well as combined treatments (N-HT and N-EO). In-situ X-ray diffraction and ex-situ transmission electron microscopy have shown that heat treatment gave first rise to the formation of a 30 nm thick amorphous layer which crystallized in rutile around 620 °C. Electrochemical oxidations gave rise to a 10 nm thick amorphous film on the top of the surface (EO) or below the amorphous nanotube layer (N-EO). Dual treated samples presented similar results with a more stable behavior for N-EO. Finally, for both corrosion and hydrophilicity points of view, the new combined treatment to get a total amorphous N-EO sample seems to be the best and even better than the partially crystallized N-HT sample.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document