Influence of Gravity Driven Convection on the Directional Solidification of Bi/MnBi Eutectic Composites

1981 ◽  
Vol 9 ◽  
Author(s):  
Ron G. Pirich ◽  
D.J. Larson

ABSTRACTThe role of gravity on Bridgman-Stockharger directional solidification of eutectic Bi/MnBi has been studied in reduced gravity aboard NASA sounding rocket SPAR flight experiments and contrasted with normal gravity investigations. The directional solidification of eutectic Ri/MnBi results in a low volume fraction, faceted/nonfaceted aligned rod eutectic whose MnRi rod size, interrod spacing, thermal and magnetic properties are sensitive functions of solidification processing conditions. The morphology of the low-gravity samples showed striking differences compared with identically processed,normal gravity samples grown in the same apparatus. The MnBi rod diameter and interrod spacing distributions were significantly smaller, approximately 50%, for the lowgravity samples compared with identically processed one gravity samples. Accompanying the smaller MnBi rod diameters observed in the flight samples, was an increase in permanent magnet properties which reached greater than 97% of the theoretical maximum.Gravitationally induced thermal instabilities in one-gravity which result in irregular interface movement and associated difficulty of the faceted MnBi phase to branch are suggested to explain the morphological differences between one and low gravity solidification.

Nukleonika ◽  
2015 ◽  
Vol 60 (1) ◽  
pp. 29-33
Author(s):  
Mariusz Hasiak

Abstract The microstructure and magnetic properties of nanocomposite hard magnetic Nd-Fe-B-(Re, Ti) materials with different Nd and Fe contents are studied. The role of Re and Ti addition in phase composition and volume fraction of the Nd-Fe-B phase is determined. All samples are annealed at the same temperature of 993 K for 10 min. Mössbauer spectroscopy shows that the addition of 4 at.% of Re to the Nd8Fe78B14 alloy leads to creation of an ineligible amount of the magnetically hard Nd2Fe14B phase. Moreover, the microstructure and magnetic characteristics recorded in a wide range of temperatures for the Nd8Fe79−xB13Mx (x = 4; M = Re or Ti) alloys are also analyzed.


Phytotaxa ◽  
2015 ◽  
Vol 207 (3) ◽  
pp. 273
Author(s):  
FRITHJOF A.S. STERRENBURG ◽  
STUART R. STIDOLPH ◽  
EUGENIA A. SAR ◽  
Ines Sunesen

In continuation of an earlier paper on Pleurosigma species with an (almost) non-sigmoid valve and raphe sternum, a comparative study was made in LM and SEM of Pleurosigma subrectum and P. acus. For P. subrectum, slides and a subsample of the type material were examined. For P. acus no unmounted material permitting SEM investigation is extant; a sample containing specimens fully matching the type in LM was therefore used as epitype material for SEM. The original data on striation of P. acus are emended. No morphological differences indicating separate specific status of these two taxa were observed and P. acus is therefore here designated a heterotypic synonym of P. subrectum. From the data now available, this is a very widely distributed species. The study demonstrates the indispensable role of collections for investigations on the diversity and distribution of diatom species.


2015 ◽  
Vol 08 (05) ◽  
pp. 1550049 ◽  
Author(s):  
Vitaly Yu. Topolov ◽  
Christopher R. Bowen ◽  
Paolo Bisegna ◽  
Anatoly E. Panich

The influence of the aspect ratio and volume fraction of ferroelectric ceramic inclusions in a 0–3 matrix on the hydrostatic parameters of a three-component 1–3-type composite is studied to demonstrate the important role of the elastic properties of the two-component matrix on the composite performance. Differences in the elastic properties of the 0–3 matrix and single-crystal rods lead to a considerable dependence of the hydrostatic response of the composite on the anisotropy of the matrix elastic properties. The performance of a 1–0–3 0.92 Pb ( Zn 1/3 Nb 2/3) O 3–0.08 PbTiO 3 SC/modified PbTiO 3 ceramic/polyurethane composite suggests that this composite system is of interest for hydroacoustic applications due to its high hydrostatic piezoelectric coefficients [Formula: see text] and [Formula: see text], squared figure of merit [Formula: see text], and electromechanical coupling factor [Formula: see text].


Author(s):  
Kris Noel Dahl ◽  
Elizabeth A. Booth-Gauthier ◽  
Alexandre J. S. Ribeiro ◽  
Zhixia Zhong

Mechanical force is found to be increasingly important during development and for proper homeostatic maintenance of cells and tissues. The nucleus occupies a large volume fraction of the cell and is interconnected with the cytoskeleton. Here, to determine the direct role of the nucleus itself in converting forces to changes in gene expression, also known as, mechanotransduction, we examine changes in nuclear mechanics and gene reorganization associated with cell fate and with extracellular force. We measure mechanics of nuclei in many model cell systems using micropipette aspiration to show changes in nuclear mechanics. In intact cells we characterize the rheological changes induced in the genome organization with live cell imaging and particle tracking, and we suggest how these changes relate to gene expression.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1019 ◽  
Author(s):  
Angella ◽  
Donnini ◽  
Ripamonti ◽  
Górny ◽  
Zanardi

Tensile testing on ductile iron GJS 400 with different microstructures produced through four different cooling rates was performed in order to investigate the relevance of the microstructure’s parameters on its plastic behaviour. Tensile flow curve modelling was carried out with the Follansbee and Estrin-Kocks-Mecking approach that allowed for an explicit correlation between plastic behaviour and some microstructure parameters. In the model, the ferritic grain size and volume fraction of pearlite and ferrite gathered in the first part of this investigation were used as inputs, while other parameters, like nodule count and interlamellar spacing in pearlite, were neglected. The model matched very well with the experimental flow curves at high strains, while some mismatch was found only at small strains, which was ascribed to the decohesion between the graphite nodules and the ferritic matrix that occurred just after yielding. It can be concluded that the plastic behaviour of GJS 400 depends mainly on the ferritic grain size and pearlitic volume fraction, and other microstructure parameters can be neglected, primarily because of their high nodularity and few defects.


1997 ◽  
Vol 12 (9) ◽  
pp. 2223-2225 ◽  
Author(s):  
Dennis S. Tucker ◽  
Gary L. Workman ◽  
Guy A. Smith

The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 157-161 ◽  
Author(s):  
D. SURESH BABU ◽  
G. NARSING RAO ◽  
L. BROHAN ◽  
M. GANNE

We report on the ac susceptibility, microwave absorption and dc magnetization of Bi 2− x V x Sr 2 Ca 2 Cu 3 O y (nominal composition). The low T c (2212) phase ( T c = 85 K ) dominates in the x = 0 sample with extremly weak flux pinning. In x = 0.4 sample, both flux pinning and volume fraction of the high T c (2223) phase ( T c = 105 K ) were increased. The intragrain critical current density of the sample with x = 0.4 was estimated and found to be comparable with that of Pb doped Bi 2 Sr 2 Ca 2 Cu 3 O y superconductor. The data suggest that addition of V 2 O 5 in Bi 2 Sr 2 Ca 2 Cu 3 O y system increases the volume fraction of the high T c phase. Probable role of vanadium in enhancing the high T c (2223) phase in Bi-V-Sr-Ca-Cu-O system is discussed.


Sign in / Sign up

Export Citation Format

Share Document