Semiconducting Polymers for Multidisciplinary Education

2000 ◽  
Vol 632 ◽  
Author(s):  
David Braun ◽  
Kevin Kingsbury ◽  
Linda Vanasupa

ABSTRACTCal Poly is in the process of revolutionizing how science and engineering students learn about semiconducting materials. Semiconducting polymers currently attract widespread attention as the subjects of numerous research and development projects. Semiconducting polymers are also excellent materials with which to teach structure-property relationships, polymer synthesis, polymer film preparation, optical and electronic properties, semiconductor device fabrication principles, and device testing.One key benefit of these materials is that they encourage student participation in educational activities that bridge several disciplines. Semiconducting polymers improve student learning by making normally obscure semiconductor concepts more tangible for students in several disciplines: chemistry students create electronics applications for the compounds they synthesize, materials engineering students learn about opto-electronics techniques, and electrical engineering students gain hands-on experience with core concepts in semiconductor devices.This presentation describes the interdisciplinary projects that students and faculty have participated in thus far, particularly during the phase of lab design and construction.

2018 ◽  
Vol 29 (3) ◽  
pp. 108
Author(s):  
Rainer Brunnert ◽  
Claudia Bohrmann-Linde ◽  
Nico Meuter ◽  
Nuno Pereira Vaz ◽  
Sebastian Spinnen ◽  
...  

<p>Five open access video tutorials concerning photochemistry for science education are presented. They address especially teachers and students, but can serve also for making photochemistry accessible to the wide public. The common format of the five tutorials is a dialogue between the young   layman   Niklas   and   a   young   scientist   who   introduces   him   into   different   topics   of photochemistry. These topics correspond to three common core concepts in worldwide chemical education: <em>structure/property-relationships</em>, <em>equilibria</em>, and <em>energy</em>. Teaching recommendations are given, as to how the tutorials can be beneficial for science lessons.</p>


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 347 ◽  
Author(s):  
Ying Wang ◽  
Xinyuan Zhou ◽  
Zaixing Yang ◽  
Fengyun Wang ◽  
Ning Han ◽  
...  

Photovoltaics (PVs) based on nanostructured III/V semiconductors can potentially reduce the material usage and increase the light-to-electricity conversion efficiency, which are anticipated to make a significant impact on the next-generation solar cells. In particular, GaAs nanowire (NW) is one of the most promising III/V nanomaterials for PVs due to its ideal bandgap and excellent light absorption efficiency. In order to achieve large-scale practical PV applications, further controllability in the NW growth and device fabrication is still needed for the efficiency improvement. This article reviews the recent development in GaAs NW-based PVs with an emphasis on cost-effectively synthesis of GaAs NWs, device design and corresponding performance measurement. We first discuss the available manipulated growth methods of GaAs NWs, such as the catalytic vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) epitaxial growth, followed by the catalyst-controlled engineering process, and typical crystal structure and orientation of resulted NWs. The structure-property relationships are also discussed for achieving the optimal PV performance. At the same time, important device issues are as well summarized, including the light absorption, tunnel junctions and contact configuration. Towards the end, we survey the reported performance data and make some remarks on the challenges for current nanostructured PVs. These results not only lay the ground to considerably achieve the higher efficiencies in GaAs NW-based PVs but also open up great opportunities for the future low-cost smart solar energy harvesting devices.


2002 ◽  
Vol 725 ◽  
Author(s):  
Subramanian Vaidyanathan ◽  
Mary E. Galvin

AbstractIn order to realize the vast potential offered by semiconducting polymers in emissive display technologies, it is important to understand the structure-property relationships that govern their performance. This paper will focus on one such relationship in the most widely studied class of polymers viz. poly(phenylene-vinylene) (PPV) derivatives. We have synthesized oxadiazole containing PPV copolymers varying the composition and sequence distribution of the oxadiazole moiety in the chain. We find that a statistically random copolymer performs 50% better in EL efficiency than the corresponding alternating copolymer with the same chemical composition, and 3 times better than the homopolymer without any oxadiazole moieties.


2017 ◽  
Vol 9 (46) ◽  
pp. 40503-40515 ◽  
Author(s):  
Min Je Kim ◽  
A-Ra Jung ◽  
Myeongjae Lee ◽  
Dongjin Kim ◽  
Suhee Ro ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
pp. 316-328 ◽  
Author(s):  
Alex T. Kararo ◽  
Rachel A. Colvin ◽  
Melanie M. Cooper ◽  
Sonia M. Underwood

The relationship between chemical structure and physical and chemical properties is essential to chemistry. Studies have shown that students have difficulty using structural representations to predict properties, which is not surprising because of the sequence of inferences that are required for sense-making. However, obtaining a nuanced model of students’ understanding depends on how information is elicited. This study investigated how the phrasing of the question prompt may elicit students’ understanding of structure–property relationships. Students were given a two-part assessment: (1) four multiple-choice questions assessing students’ self-reported abilities to predict structure–property relationships, and (2) three questions requiring students to predict, argue, and explain a boiling point trend. Two groups of students were selected to determine the sensitivity of the instrument (one with less explicit instruction of structure–property relationships and one with more explicit instruction). We found that Part I of the assessment was able to differentiate between these two groups of students. The group with more explicit instruction was further analyzed to determine how their prediction on a boiling point task connected to their arguments and explanations of the phenomenon. Even though 64% of students answered the boiling point ranking task correctly, the students typically provided less complete arguments as to why that structure had a higher boiling point. However, after scaffolding (i.e., providing relevant information for the phenomenon) and asking for an explanation, students’ responses began to include a much more mechanistic understanding, suggesting that having students provide explanations instead of constructing an argument would display their reasoning at a deeper level.


Author(s):  
J. Petermann ◽  
G. Broza ◽  
U. Rieck ◽  
A. Jaballah ◽  
A. Kawaguchi

Oriented overgrowth of polymer materials onto ionic crystals is well known and recently it was demonstrated that this epitaxial crystallisation can also occur in polymer/polymer systems, under certain conditions. The morphologies and the resulting physical properties of such systems will be presented, especially the influence of epitaxial interfaces on the adhesion of polymer laminates and the mechanical properties of epitaxially crystallized sandwiched layers.Materials used were polyethylene, PE, Lupolen 6021 DX (HDPE) and 1810 D (LDPE) from BASF AG; polypropylene, PP, (PPN) provided by Höchst AG and polybutene-1, PB-1, Vestolen BT from Chemische Werke Hüls. Thin oriented films were prepared according to the method of Petermann and Gohil, by winding up two different polymer films from two separately heated glass-plates simultaneously with the help of a motor driven cylinder. One double layer was used for TEM investigations, while about 1000 sandwiched layers were taken for mechanical tests.


Sign in / Sign up

Export Citation Format

Share Document