Synthesis of Low-Density Microcellular Materials

MRS Bulletin ◽  
1990 ◽  
Vol 15 (12) ◽  
pp. 24-29

This section describes and gives examples of processes developed at the DOE laboratories to make LDMMs. In general, these processes fall under one of two schemes: (1) phase separation of polymer or polymer-like solutions, or (2) replication of sacrificial pore formers. Both schemes produce a liquid-filled precursor. The LDMM can be obtained only if this precursor can be “dried” without collapsing the underlying structure. This key synthetic step is rarely a trivial task, and because of its importance, this section starts with a description of LDMM drying technologies.Most liquid-filled LDMM precursors will collapse into a high-density mass if subjected to evaporative drying. This occurs because large capillary forces are generated when the liquid meniscus moves through the small cells and pores of the precursor. Only very strong and relatively large-celled precursor structures (e.g., inverse emulsions) can withstand these forces.Some LDMM precursors of moderate strength can be dried by evaporation if the precursor is exchanged into a liquid of low surface tension. Liquified carbon dioxide is an example — at room temperature, liquid CO2 has a surface tension of 1–2 dynes/cm, compared to ˜70 dynes/cm for water, and 20–40 dynes/cm for most organic solvents. CO2 evaporative drying should not be confused with C02 supercritical drying discussed later.

2019 ◽  
Vol 7 (2) ◽  
pp. 366-372 ◽  
Author(s):  
Frank F Yun ◽  
Zhenwei Yu ◽  
Yahua He ◽  
Lei Jiang ◽  
Zhao Wang ◽  
...  

Abstract Room-temperature liquid metal is discovered to be capable of penetrating through macro- and microporous materials by applying a voltage. The liquid metal penetration effects are demonstrated in various porous materials such as tissue paper, thick and fine sponges, fabrics, and meshes. The underlying mechanism is that the high surface tension of liquid metal can be significantly reduced to near-zero due to the voltage-induced oxidation of the liquid metal surface in a solution. It is the extremely low surface tension and gravity that cause the liquid metal to superwet the solid surface, leading to the penetration phenomena. These findings offer new opportunities for novel microfluidic applications and could promote further discovery of more exotic fluid states of liquid metals.


2017 ◽  
Vol 10 (8) ◽  
pp. 1854-1861 ◽  
Author(s):  
Yingpeng Wu ◽  
Lu Huang ◽  
Xingkang Huang ◽  
Xiaoru Guo ◽  
Dan Liu ◽  
...  

Benefiting from fluidity and surface tension, materials in a liquid form are one of the best candidates for self-healing applications.


Author(s):  
Gabriela Fujita de Freitas ◽  
Julian Martinez ◽  
Juliane Viganó

Aerogels are materials with an open porous, low density and high surface area, which make them an interesting material to carry target compounds. The proposal of this work was to produce gellan aerogels and to study the effect of the diffusion method and internal setting method, the temperature of the gellan pre-treatment, and the addition of inulin on the aerogel shrinkage during the process. The aerogels were produced through hydrogel formulation, solvent exchange to obtain alcogel, and supercritical drying with carbon dioxide. The addition of inulin has reduced the shrinkage, but gelling methods to avoid the inulin loss must be studied, as the oil containing the gelling agent.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


2021 ◽  
pp. 2001936
Author(s):  
Jun‐Heng Fu ◽  
Tian‐Ying Liu ◽  
Yuntao Cui ◽  
Jing Liu

2013 ◽  
Vol 395-396 ◽  
pp. 637-640
Author(s):  
Yi Yang ◽  
Zheng Ping Wang ◽  
Ling Meng ◽  
Lian Jun Wang

MIL-101, a metal-organic framework material, was synthesized by the high-temperature hydrothermal method. Triethylenetetramine (TETA) modification enabled the effective grafting of an amino group onto the surface of the materials and their pore structure. The crystal structure, micromorphology, specific surface area, and pore structure of the samples before and after modification were analyzed with an X-ray diffractometer, scanning electron microscope, specific surface and aperture tester, and infrared spectrometer. The carbon dioxide adsorption properties of the samples were determined by a thermal analyzer before and after TETA modification. Results show that moderate amino modification can effectively improve the microporous structure of MIL-101 and its carbon dioxide adsorption properties. After modification, the capacity of MIL-101 to adsorb carbon dioxide decreased only by 0.61 wt%, and a high adsorption capacity of 9.45 wt% was maintained after six cycles of adsorption testing at room temperature and ambient pressure.


Sign in / Sign up

Export Citation Format

Share Document