scholarly journals Determining the kinetic and energy parameters for a combined technique of drying apple raw materials using direct electric heating

2021 ◽  
Vol 1 (11 (109)) ◽  
pp. 33-41
Author(s):  
Oleksandr Savoiskyi ◽  
Valerii Yakovliev ◽  
Viktor Sirenko

The development of technology and drying equipment tackles a triune task: to intensify drying processes, to save energy, to ensure that proper product quality is achieved. This issue is resolved by modern advancements by supplying thermal energy throughout the entire sample volume. The simplest option among the known techniques is to heat wet raw materials by passing an electric current directly, with an external blowing by a hot heat carrier. This paper reports an experimental study of the combined process of drying apple raw materials using direct electric heating. The influence of control factors such as the field intensity and a heat carrier temperature on the kinetic parameters of the process has been determined, namely: the duration of the combined drying of apples, the rate of moisture removal, and a change in the temperature of the sample. It was established that the application of additional electric heating with an electric field intensity of 20–40 V/cm during convective drying with a heat carrier temperature of 25–55 °C reduces the duration of apple dehydration by 3‒5 times. Permissible limits for changing the combinations of basic technological parameters have been determined, as well as the rational modes for treating raw materials in order to ensure the predefined quality of finished products. Such combinations of technological parameters of heating, in particular the intensity of the electric field and air in the dryer, are 30 V/cm+40 °C, and 25 V/cm+55 °C. The energy parameters of the proposed combined technique of drying apple raw materials have been determined. It was established that the specific energy consumption for the removal of 1 kg of moisture at direct electric heating is 2,350–2,400 kJ/kg (0.66 kWh/kg). The study performed could provide a prerequisite for devising an energy-efficient technique for the combined drying of fruit and vegetable raw materials using direct electric heating

1968 ◽  
Vol 23 (12) ◽  
pp. 2035-2039
Author(s):  
M. Sánchez

The mobility of hot electrons and holes in germanium at a lattice temperature of 300°K is calculated as dependent on carrier temperature and electric field intensity including not only the acoustical and nonpolar optical mode scattering but also the ionized impurity scattering. The Conwell theory of lattice mobility of hot carriers and the Conwell-Weisskopf theory of ionized impurity scattering are applied by taking into account the factor exp (θ/2 Te) in the average rate of change of carrier energy due to nonpolar optical interactions. The mobility is evaluated on an electronic digital computer as a function of the carrier temperature and electric field intensity for impurity concentrations 0, 4 x 1016, 2 x 1017, 1018 and 2.5 x 1019 cm-3, and also as a function of impurity concentration for low electric field intensities. The comparison of the theoretical results with the experimental data available shows a relatively good agreement.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jan Valtera ◽  
Lucie Vysloužilová ◽  
Jiří Komárek ◽  
Josef Skřivánek ◽  
Petr Žabka ◽  
...  

The paper focuses on the influence of the protrusion of the rod electrode on critical voltage in the DC electrospinning process. On the testing and industrial DC electrospinning devices, electrodes of any kind are extended towards the counter electrode. This provides the maximal, that is, supercritical, electric field intensity on the spinning-electrode orifice that is found to be higher than on the other supplementary parts. The principal study and experiments with basic apparatus were carried out and presented by Taylor in 1966. This study is focused on the arrangement closely related to the design of the real electrospinning device with respect to the safety and technological aspects. Results of the carried out experiments of the rod spinning-electrode are compared with the electrostatic simulation and analytical calculation. The presented effect of the electrode protrusion on the potential difference and the critical field strength introduces valuable information for the designers of electrospinning machines as well as for the setting up of the optimal technological parameters for producing modern nonwoven textile products.


2006 ◽  
Vol 12 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Vaclovas Kveselis ◽  
Sigitas Masaitis ◽  
Petras Urbonas

Widely developed DH systems in Lithuanian towns and small settlements undergo modernisations aimed to increase their efficiency and heat supply quality. Typically, modernisations include the replacement of building heat substations, the reduction of heat losses in pipes and more efficient heat production, including the use of indigenous fuel resources. It was notified that new heat substations equipped with automatic heating control devices have backward impact on the technological parameters of DH networks. Modelling tools for simulation of hydraulic and thermal parameters in the network allow estimating of potential deviation of heat carrier temperature with loading variations not only during the season of the year, but also over day and night. Special technical measures can be taken to avoid unduly low heat carrier supply temperatures and violation of hot water supply quality requirements. Cost estimation of such measures versus the option of full network renovation is presented in the article.


Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1157
Author(s):  
Yong Liu ◽  
Xingwang Huang

Ceramic outdoor insulators play an important role in electrical insulation and mechanical support because of good chemical and thermal stability, which have been widely used in power systems. However, the brittleness and surface discharge of ceramic material greatly limit the application of ceramic insulators. From the perspective of sintering technology, flash sintering technology is used to improve the performance of ceramic insulators. In this paper, the simulation model of producing the ceramic insulator by the flash sintering technology was set up. Material Studio was used to study the influence of electric field intensity and temperature on the alumina unit cell. COMSOL was used to study the influence of electric field intensity and current density on sintering speed, density and grain size. Obtained results showed that under high temperature and high voltage, the volume of the unit cell becomes smaller and the atoms are arranged more closely. The increase of current density can result in higher ceramic density and larger grain size. With the electric field intensity increasing, incubation time shows a decreasing tendency and energy consumption is reduced. Ceramic insulators with a higher uniform structure and a smaller grain size can show better dielectric performance and higher flashover voltage.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1419
Author(s):  
Toshio Sugaya ◽  
Yukio Kawano

Terahertz waves are located in the frequency band between radio waves and light, and they are being considered for various applications as a light source. Generally, the use of light requires focusing; however, when a terahertz wave is irradiated onto a small detector or a small measurement sample, its wavelength, which is much longer than that of visible light, causes problems. The diffraction limit may make it impossible to focus the terahertz light down to the desired range by using common lenses. The Bull’s Eye structure, which is a plasmonic structure, is a promising tool for focusing the terahertz light beyond the diffraction limit and into the sub-wavelength region. By utilizing the surface plasmon propagation, the electric field intensity and transmission coefficient can be enhanced. In this study, we improved the electric field intensity and light focusing in a small region by adapting the solid immersion method (SIM) from our previous study, which had a frequency-tunable nonconcentric Bull’s Eye structure. Through electromagnetic field analysis, the electric field intensity was confirmed to be approximately 20 times higher than that of the case without the SIM, and the transmission measurements confirmed that the transmission through an aperture had a gap of 1/20 that of the wavelength. This fabricated device can be used in imaging and sensing applications because of the close contact between the transmission aperture and the measurement sample.


Sign in / Sign up

Export Citation Format

Share Document