scholarly journals Estimating the effect of aqueous cationic latex from the class of thermal elastic plastics on the properties of bitumen emulsions

2021 ◽  
Vol 4 (6(112)) ◽  
pp. 14-22
Author(s):  
Valeriy Zhdaniuk ◽  
Victoria Novakovska

To produce cationic bitumen emulsions, bitumen is used, whose penetration is not lower than 90 mm-1. Such bitumen has a small plasticity interval, which leads to a deterioration in its heat resistance at elevated temperatures and narrows the scope of application of emulsions based on it. Based on the review of emulsion modification methods, the modification has been proposed that involves mixing the finished bitumen emulsions with aqueous cationic latex. The process of interaction between a bituminous emulsion and an aqueous cationic latex has been considered. A mechanism for the disintegration of the modified bitumen emulsion on the surface of mineral materials was proposed. The emulsifiers have been selected and the composition of the aqueous phase has been chosen based on the analysis of surface tension isotherms. The influence of the modification on the properties of bitumen emulsions was investigated. It was established that the main physicochemical characteristics of the interphase surface accept similar values for the aqueous phase and emulsions based on it. It has been proven that the introduction of aqueous cationic latex quite moderately affects the basic physical-mechanical properties of emulsions, which makes it possible not to change the main technological parameters when using them. It was established that increasing the concentration of the polymer in the emulsion has a positive effect on the physical-mechanical properties of the binder. With an increase in the concentration of the polymer to 6 % the softening temperature increases by 16 °C, elasticity is 74 %, and the holding capacity at minus 25 °C is approaching 100 %. Improving the physical-mechanical properties of residual binder as a result of emulsion modification could increase the durability of layers in a roadbed based on bitumen emulsions and expand the scope of their application in the construction and repair of motorways

Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract BRUSH Alloy 3 offers the highest electrical and thermal conductivity of any beryllium-copper alloy. It possesses an excellent combination of moderate strength, good corrosion resistance and good resistance to moderately elevated temperatures. Because of its unique physical and mechanical properties, Brush Alloy 3 finds widespread use in welding applications (RWMA Class 3), current-carrying springs, switch and instrument parts and similar components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Cu-454. Producer or source: Brush Wellman Inc..


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract NICROFER 6023 is a nickel-chromium-iron alloy containing small quantities of aluminum. It has excellent resistance to oxidation at high temperatures, good resistance in oxidizing sulfur-bearing atmospheres and good resistance to carburizing conditions. The alloy has good mechanical properties at room and elevated temperatures. Its applications include heat treating furnace equipment, chemical equipment in various industries, and power plant equipment. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-314. Producer or source: Vereingte Deutsche Metallwerke AG.


Alloy Digest ◽  
1966 ◽  
Vol 15 (5) ◽  

Abstract ESCO Alloy 72 is a cobalt-base alloy having high corrosion, heat and thermal shock resistance. It is recommended for applications requiring good mechanical properties at elevated temperatures and/or in corrosive media. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-48. Producer or source: ESCO Corporation.


Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


Alloy Digest ◽  
1965 ◽  
Vol 14 (9) ◽  

Abstract SANDVIK SANICRO 31 is an iron-nickel-chromium alloy having good resistance to corrosion and oxidation and good mechanical properties at elevated temperatures. It is recommended for electrical sheathing, pyrometer tubes, equipment for heat treating and furnace tubes and other equipment in the petrochemical industry. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-172. Producer or source: Sandvik.


Alloy Digest ◽  
1963 ◽  
Vol 12 (12) ◽  

Abstract Timken 16-15-6 is a non-magnetic, austenitic, corrosion and heat resistant steel having high creep resistance at elevated temperatures and good corrosion and oxidation resistance. It age-hardens at elevated temperatures after solution quenching, and possesses very high mechanical properties. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-150. Producer or source: Timken Roller Bearing Company.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3755
Author(s):  
Štefan Gašpár ◽  
Tomáš Coranič ◽  
Ján Majerník ◽  
Jozef Husár ◽  
Lucia Knapčíková ◽  
...  

The resulting quality of castings indicates the correlation of the design of the mold inlet system and the setting of technological parameters of casting. In this study, the influence of design solutions of the inlet system in a pressure mold on the properties of Al-Si castings was analyzed by computer modelling and subsequently verified experimentally. In the process of computer simulation, the design solutions of the inlet system, the mode of filling the mold depending on the formation of the casting and the homogeneity of the casting represented by the formation of shrinkages were assessed. In the experimental part, homogeneity was monitored by X-ray analysis by evaluating the integrity of the casting and the presence of pores. Mechanical properties such as permanent deformation and surface hardness of castings were determined experimentally, depending on the height of the inlet notch. The height of the inlet notch has been shown to be a key factor, significantly influencing the properties of the die-cast parts and influencing the speed and filling mode of the mold cavity. At the same time, a significant correlation between porosity and mechanical properties of castings is demonstrated. With the increasing share of porosity, the values of permanent deformation of castings increased. It is shown that the surface hardness of castings does not depend on the integrity of the castings but on the degree of subcooling of the melt in contact with the mold and the formation of a fine-grained structure in the peripheral zones of the casting.


Sign in / Sign up

Export Citation Format

Share Document