scholarly journals Consideration of requirements for materials for different bioprinting methods

2021 ◽  
Vol 5 (2(61)) ◽  
pp. 55-57
Author(s):  
Viktoriia Kuliavets ◽  
Olena Bespalova

The object of research is the characteristics of the materials used in the bioprinting process. One of the biggest problems in the field of bioprinting is the materials used for printing organs, in particular, the lack of mechanical properties of these materials, such as strength, elasticity, ductility, wear resistance, and the like. They are essential to achieve the stabilization of printed structures. During the study, the requirements for materials used in the technology of three-dimensional bioprinting, including hydrogels, were discussed. Three main methods were considered (extrusion bioprinting, drip bioprinting, laser bioprinting), for each of which separate requirements for materials are put forward. Comparative assessment of these materials for different types of printing techniques are obtained. It is also determined that the extrusion printing technique is the most used for this direction of use, however, there remains the problem of the viability of living cells through the force of the bias stress, which occurs when the substance is squeezed out from the side of the nozzle walls. It is determined that the main requirements are the ability to gel, low surface tension, wettability and viscosity of the substance. Through understanding and structured information, it is possible to provide biological connections for better cellular interactions and improve the nutrient medium for the creation of physiologically relevant, functional tissues that can be engrafted by the human body after implantation. With such initial data, it is possible to develop new materials and improve existing ones that would meet all these requirements. By identifying the key problem, new ways of solving it can be developed. The above problems are some of the main reasons why researchers are still far from the bioprinting of clinically significant functional organs. Nonetheless, thanks to the new development, bioprinting will become a key technology for future tissue engineering, regenerative medicine and pharmaceuticals.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Alianna Maguire ◽  
Neethu Pottackal ◽  
M A S R Saadi ◽  
Muhammad M Rahman ◽  
Pulickel M Ajayan

Abstract Extrusion-based additive manufacturing (AM) enables the fabrication of three-dimensional structures with intricate cellular architectures where the material is selectively dispensed through a nozzle or orifice in a layer-by-layer fashion at the macro-, meso-, and micro-scale. Polymers and their composites are one of the most widely used materials and are of great interest in the field of AM due to their vast potential for various applications, especially for the medical, military, aerospace, and automotive industries. Because architected polymer-based structures impart remarkably improved material properties such as low density and high mechanical performance compared to their bulk counterparts, this review focuses particularly on the development of such objects by extrusion-based AM intended for structural applications. This review introduces the extrusion-based AM techniques followed by a discussion on the wide variety of materials used for extrusion printing, various architected structures, and their mechanical properties. Notable advances in newly developed polymer and composite materials and their potential applications are summarized. Finally, perspectives and insights into future research of extrusion-based AM on developing high-performance ultra-light materials using polymers and their composite materials are discussed.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


2019 ◽  
Vol 63 (5) ◽  
pp. 50402-1-50402-9 ◽  
Author(s):  
Ing-Jr Ding ◽  
Chong-Min Ruan

Abstract The acoustic-based automatic speech recognition (ASR) technique has been a matured technique and widely seen to be used in numerous applications. However, acoustic-based ASR will not maintain a standard performance for the disabled group with an abnormal face, that is atypical eye or mouth geometrical characteristics. For governing this problem, this article develops a three-dimensional (3D) sensor lip image based pronunciation recognition system where the 3D sensor is efficiently used to acquire the action variations of the lip shapes of the pronunciation action from a speaker. In this work, two different types of 3D lip features for pronunciation recognition are presented, 3D-(x, y, z) coordinate lip feature and 3D geometry lip feature parameters. For the 3D-(x, y, z) coordinate lip feature design, 18 location points, each of which has 3D-sized coordinates, around the outer and inner lips are properly defined. In the design of 3D geometry lip features, eight types of features considering the geometrical space characteristics of the inner lip are developed. In addition, feature fusion to combine both 3D-(x, y, z) coordinate and 3D geometry lip features is further considered. The presented 3D sensor lip image based feature evaluated the performance and effectiveness using the principal component analysis based classification calculation approach. Experimental results on pronunciation recognition of two different datasets, Mandarin syllables and Mandarin phrases, demonstrate the competitive performance of the presented 3D sensor lip image based pronunciation recognition system.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e041427
Author(s):  
Biming He ◽  
Rongbing Li ◽  
Dongyang Li ◽  
Liqun Huang ◽  
Xiaofei Wen ◽  
...  

IntroductionThe classical pathway for diagnosing prostate cancer is systematic 12-core biopsy under the guidance of transrectal ultrasound, which tends to underdiagnose the clinically significant tumour and overdiagnose the insignificant disease. Another pathway named targeted biopsy is using multiparametric MRI to localise the tumour precisely and then obtain the samples from the suspicious lesions. Targeted biopsy, which is mainly divided into cognitive fusion method and software-based fusion method, is getting prevalent for its good performance in detecting significant cancer. However, the preferred targeted biopsy technique in detecting clinically significant prostate cancer between cognitive fusion and software-based fusion is still beyond consensus.Methods and analysisThis trial is a prospective, single-centre, randomised controlled and non-inferiority study in which all men suspicious to have clinically significant prostate cancer are included. This study aims to determine whether a novel three-dimensional matrix positioning cognitive fusion-targeted biopsy is non-inferior to software-based fusion-targeted biopsy in the detection rate of clinically significant cancer in men without a prior biopsy. The main inclusion criteria are men with elevated serum prostate-specific antigen above 4–20 ng/mL or with an abnormal digital rectal examination and have never had a biopsy before. A sample size of 602 participants allowing for a 10% loss will be recruited. All patients will undergo a multiparametric MRI examination, and those who fail to be found with a suspicious lesion, with the anticipation of half of the total number, will be dropped. The remaining participants will be randomly allocated to cognitive fusion-targeted biopsy (n=137) and software-based fusion-targeted biopsy (n=137). The primary outcome is the detection rate of clinically significant prostate cancer for cognitive fusion-targeted biopsy and software-based fusion-targeted biopsy in men without a prior biopsy. The clinically significant prostate cancer will be defined as the International Society of Urological Pathology grade group 2 or higher.Ethics and disseminationEthical approval was obtained from the ethics committee of Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China. The results of the study will be disseminated and published in international peer-reviewed journals.Trial registration numberClinicalTrials.gov Registry (NCT04271527).


2021 ◽  
Vol 2 (1) ◽  
pp. 100-109
Author(s):  
Jailson de Araújo Santos ◽  
Daniel Barbosa Liarte ◽  
Alessandra Braga Ribeiro ◽  
Marcia dos Santos Rizzo ◽  
Marcília Pinheiro da Costa ◽  
...  

Bacterial transformation and gene transfection can be understood as being the results of introducing specific genetic material into cells, resulting in gene expression, and adding a new genetic trait to the host cell. Many studies have been carried out to investigate different types of lipids and cationic polymers as promising nonviral vectors for DNA transfer. The present study aimed to carry out a systematic review on the use of biopolymeric materials as nonviral vectors. The methodology was carried out based on searches of scientific articles and applications for patents published or deposited from 2006 to 2020 in different databases for patents (EPO, USPTO, and INPI) and articles (Scopus, Web of Science, and Scielo). The results showed that there are some deposits of patents regarding the use of chitosan as a gene carrier. The 16 analyzed articles allowed us to infer that the use of biopolymers as nonviral vectors is limited due to the low diversity of biopolymers used for these purposes. It was also observed that the use of different materials as nonviral vectors is based on chemical structure modifications of the material, mainly by the addition of cationic groups. Thus, the use of biopolymers as nonviral vectors is still limited to only a few polysaccharide types, emphasizing the need for further studies involving the use of different biopolymers in processes of gene transfer.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Emily G. Sweeney ◽  
Andrew Nishida ◽  
Alexandra Weston ◽  
Maria S. Bañuelos ◽  
Kristin Potter ◽  
...  

ABSTRACTBacteria are often found living in aggregated multicellular communities known as biofilms. Biofilms are three-dimensional structures that confer distinct physical and biological properties to the collective of cells living within them. We used agent-based modeling to explore whether local cellular interactions were sufficient to give rise to global structural features of biofilms. Specifically, we asked whether chemorepulsion from a self-produced quorum-sensing molecule, autoinducer-2 (AI-2), was sufficient to recapitulate biofilm growth and cellular organization observed for biofilms ofHelicobacter pylori, a common bacterial resident of human stomachs. To carry out this modeling, we modified an existing platform, Individual-based Dynamics of Microbial Communities Simulator (iDynoMiCS), to incorporate three-dimensional chemotaxis, planktonic cells that could join or leave the biofilm structure, and cellular production of AI-2. We simulated biofilm growth of previously characterizedH. pyloristrains with various AI-2 production and sensing capacities. Using biologically plausible parameters, we were able to recapitulate both the variation in biofilm mass and cellular distributions observed with these strains. Specifically, the strains that were competent to chemotax away from AI-2 produced smaller and more heterogeneously spaced biofilms, whereas the AI-2 chemotaxis-defective strains produced larger and more homogeneously spaced biofilms. The model also provided new insights into the cellular demographics contributing to the biofilm patterning of each strain. Our analysis supports the idea that cellular interactions at small spatial and temporal scales are sufficient to give rise to larger-scale emergent properties of biofilms.IMPORTANCEMost bacteria exist in aggregated, three-dimensional structures called biofilms. Although biofilms play important ecological roles in natural and engineered settings, they can also pose societal problems, for example, when they grow in plumbing systems or on medical implants. Understanding the processes that promote the growth and disassembly of biofilms could lead to better strategies to manage these structures. We had previously shown thatHelicobacter pyloribacteria are repulsed by high concentrations of a self-produced molecule, AI-2, and thatH. pylorimutants deficient in AI-2 sensing form larger and more homogeneously spaced biofilms. Here, we used computer simulations of biofilm formation to show that localH. pyloribehavior of repulsion from high AI-2 could explain the overall architecture ofH. pyloribiofilms. Our findings demonstrate that it is possible to change global biofilm organization by manipulating local cell behaviors, which suggests that simple strategies targeting cells at local scales could be useful for controlling biofilms in industrial and medical settings.


Sign in / Sign up

Export Citation Format

Share Document