scholarly journals MATURITY ANALYSIS OF BIM SOLUTIONS AS A TOOL FOR BUILDING LIFE CYCLE SUPPORT

2020 ◽  
Vol 11 (3) ◽  
pp. 41-53
Author(s):  
A. S Suntsov ◽  
O. L Simchenko ◽  
Y. A Tolkachev ◽  
E. L Chazov ◽  
D. R Samigullina

In this article, by studying the market for BIM solutions, we analyze the capabilities of the building information model for its compliance with the modern BIM ideology. Development in the direction of supporting the process of building construction: from the moment of the idea of its construction to complete dismantling, the BIM concept also included economic and planned components. At the present stage, the information model should develop and live with the building, even after putting it into operation. The purpose of this study is to analyze the maturity level of BIM solutions in accordance with the current development of BIM technologies at all stages of the building's life cycle. The stages of creating a model are distinguished: drawing up technical specifications for designing, performing engineering surveys, compiling 3 types of information models in accordance with the requirements for the development of the relevant sections of project documentation. The stages of the BIM-model life cycle that need to be improved are identified: operation, dismantling of buildings. The features of compiling information models, existing BIM solutions from various software manufacturers are considered. The comparison of existing BIM-solutions at all stages of creating an information model. For the analysis of BIM solutions, an expert assessment method will be used. A list of indicators and their rating weight for the methodology of expert evaluations is compiled. An assessment of the maturity of BIM-solutions. As a result of the analysis, a graph was compiled that clearly demonstrates the degree of maturity of the information model for the life cycle. The average percentage of development as a result of the assessment is determined. Some BIM solutions raise the question of the appropriateness of their use in the field of BIM technologies.

The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Vestnik MGSU ◽  
2020 ◽  
pp. 1570-1583
Author(s):  
Sergey A. Volkov ◽  
Tatiana V. Khripko

Introduction. Building Information Modeling (BIM) is an auspicious approach that supports management and exchange of semantically rich 3D models across design disciplines. Recently, BIM has gained widespread acceptance in the AEC industry, and it improves the efficiency and quality of the process by facilitating the early exchange of 3D building models. At different stages of the life cycle, a building information model is gradually refined from rough conceptual design to detailed individual components. The task is to develop mechanisms for machine verification (authentication) of data transmitted to/from different systems (for example, from a customer to an expert evaluation authority, from a contractor to the urban planning management information system or any other state information system) in the form of an information model of capital construction facilities or certain components of an information model. Materials and methods. To substantiate the choice of the language employed to describe machine-readable documents, various use cases of XML schemas were analyzed, including the use of the Google Trends tool. Information systems, implemented in the Russian Federation, were also considered. Most of them use the W3C XML Schema language to describe XSD schemas. Results. A consolidated list of XML schemas, necessary and sufficient to maintain stages of the life cycle of a capital construction facility in terms of interaction with the Urban Planning Management Information System is presented. To ensure interaction between the life cycle participants and state information systems, it is necessary to have the list of XML schemas approved at the federal level. The paper presents matrixes of scenarios for the application of XML schemas in the following coordinates: participants, life cycle stages. Conclusions. XML schemas can be supplemented in respect of various stages of a life cycle of a capital construction faci-lity to be verified with due regard for further methodological approaches and changes in regulatory and technical acts; new approaches and the need for this supplementation must be substantiated.


2012 ◽  
Vol 1 (4) ◽  
pp. 8-17 ◽  
Author(s):  
Muhammad T. Shafiq ◽  
Jane Matthews ◽  
Stephen R. Lockley

The application of Building Information Modelling (BIM) has demonstrated enormous potential to deliver consistency in the construction collaboration process. BIM can define an explicit configuration for digitized information exchange; however the technology to collaborate on models has not yet delivered the industry requirements for BIM collaboration. This research project is intended to provide a fresh review of industry requirements for BIM collaboration and will analyse how these requirements can be supported using a model server as a collaboration platform. This paper presents a review of existing collaboration platforms, with a particular focus to evaluate the research and development efforts on model servers as a collaboration platform. This paper also reports on the findings of three focus group sessions with industry practitioners to identify any problems in the available collaboration systems. The focus group findings identify a number of issues in current collaboration environments which help to understand the main domains of user requirements for BIM collaboration. These requirement domains will be further analysed to identify functional and technical specifications for a model server enabled collaboration platform.


2019 ◽  
Vol 17 (3) ◽  
pp. 301-316 ◽  
Author(s):  
Marjan Sadeghi ◽  
Jonathan Weston Elliott ◽  
Nick Porro ◽  
Kelly Strong

PurposeThis paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver integrated handover deliverables.Design/methodology/approachThe Building Handover Information Model (BHIM) framework proposed herein is contextualized given the Construction Operation Information Exchange (COBie) and the level of development schema. The process uses Autodesk Revit as the primary BIM-authoring tool and Dynamo as an add-in for extending Revit’s parametric functionality, BHIM validation, information retrieval and documentation in generating operation and maintenance (O&M) deliverables in the end-user requested format.FindingsGiven the criticality of semantics for model elements in the BHIM and for appropriate interoperability in BIM collaboration, each discipline should establish model development and exchange protocols that define the elements, geometrical and non-geometrical information requirements and acceptable software applications early in the design phase. In this case study, five information categories (location, specifications, warranty, maintenance instructions and Construction Specifications Institute MasterFormat division) were identified as critical for model elements in the BHIM for handover purposes.Originality/valueDesign- and construction-purposed BIM is a standard platform in collaborative architecture, engineering and construction practice, and the models are available for many recently constructed facilities. However, interoperability issues drastically restrict implementation of these models in building information handover and O&M. This study provides essential input regarding BIM exchange protocols and collaborative BIM libraries for handover purposes in collaborative BIM development.


2011 ◽  
Vol 368-373 ◽  
pp. 3797-3800
Author(s):  
Xu Dong Zeng ◽  
Wei Qiang Zhou

Construction project life-cycle management should be based on the visualization of a virtual building, through the establishment of a Building Information Model in the phase of architectural design as a life-cycle information carrier to realize complete information integration. This enables all phases and territories of the whole building life-cycle to achieve in-time information-sharing so as to overcome traditional territory management pattern. This also improves the running mode and information management during the phases of design, costing, construction and operation.


Author(s):  
Xiaoliang Li ◽  
Wenjie Xia ◽  
Zongcai Li

Due to the continuous introduction of new building technologies, research results, and technical specifications, the design and construction process of buildings has become extremely complex, paying more attention to the sustainable development of the building itself; it not only requires close communication between project participants, but also an in-depth analysis of building performance and structure is required during the design phase. Building Information Modeling (BIM) technology has been widely used in the development of the construction industry in recent years. It can effectively realize the integration of building information, so that all parties involved in the project can work together based on the same platform, which can more effectively improve work efficiency and save resource input, lower construction costs, and ultimately achieve the goal of sustainable development. On the basis of summarizing the previous research results, this paper uses BIM technology to analyze the optimization effect of large-scale construction engineering from the aspects of information model, resource allocation and technology optimization. The analysis results provide reference for subsequent in-depth research.


2019 ◽  
pp. 849-864
Author(s):  
Giulia Carbonari ◽  
Spyridon Stravoravdis ◽  
Christine Gausden

The use of Building information modelling for the design and construction phase of a building has been thoroughly looked into by researchers and practitioners and there is evidence to support that it is beneficial for reducing cost, time and improving communication. Yet the potential use of BIM for the operational and management phase (Facilities management), besides maintenance schedules and equipment information and location, is still not clearly identified. The UK Government, institutional clients and major private owners are now demanding for BIM for new construction and major refurbishment but given that 70-75% of the current UK building stock will still be in use in 2050, a significant part of the existing facilities will not have an information model till the next major refurbishment, creating a major gap in the built environment. This paper presents a new framework aimed at creating information models for facilities management requiring minimal BIM skills and discusses the impact that models created for the operational stage would have on the whole life cycle of a building.


2018 ◽  
Vol 49 ◽  
pp. 00126 ◽  
Author(s):  
Arkadiusz Węglarz ◽  
Michał Pierzchalski

This article concerns the Life Cycle Assessment method of evaluation and the ways in which it can be applied as a tool facilitating the design of buildings to reduce embodied energy and embodied carbon. Three variants of a building were examined with the same functional ground plan and usable floor area of 142.6 m2. Each variant of the building was designed using different construction technologies: bricklaying technology utilizing autoclaved aerated concrete popular in Poland, wooden frame insulated with mineral wool, and the Straw-bale technology. Using digital models (Building Information Model) the building’s energy characteristics was simulated and the embodied energy and embodied carbon of the production stage (also called cradle-to-gate) were calculated. The performed calculations were used to compare the cumulative energy and embodied carbon of each variant for a 40 year long life cycle.


2020 ◽  
Vol 12 (24) ◽  
pp. 10329
Author(s):  
Ke Xing ◽  
Ki Pyung Kim ◽  
David Ness

While the Circular Economy in the built environment is often viewed in terms of recycling, more value can be obtained from buildings and physical components by their reuse, aided by stewardship and remanufacture, to ensure optimum performance capability. The use of cyber-physical information for online identification, examination and exchange of reusable components may improve their life-cycle management and circularity. To this end, a bi-directional data exchange system is established between physical building components and their virtual Building Information Modeling (BIM) counterparts, so that their life-cycle information—including history of ownership, maintenance record, technical specifications and physical condition—can be tracked, monitored and managed. The resultant prototype Cloud-based BIM platform is then adapted to support an ongoing product-service relationship between suppliers/providers and users/clients. A case study from a major new hospital, focusing upon an example of internal framed glazed systems, is presented for ”proof of concept” and to demonstrate the application of the proposed method. The result of the case study shows that, informed by the life-cycle data from the Cloud-BIM platform, a “lease with reuse” service option is able to deliver a lower total cost and less carbon intensity for each unit of frame-glazed module. This leads to a higher level of eco-efficiency, coupled with decreased consumption of material resources and reduced generation of waste. The research is expected to serve as a step forward in the era of Industry 4.0 and illuminate a more sophisticated way to manage building assets.


2021 ◽  
Vol 7 (01) ◽  
pp. 16-26
Author(s):  
Michal Brandtner

The article deals with the data structure for the purpose of Life Cycle Assessment (LCA) of buildings using the Building Information Model (BIM). LCA is a method that can be used to demonstrate the suitability of proposed materials, structures, or buildings in terms of their whole life cycle and its environmental impact. For the LCA evaluation it is crucial to obtain life cycle inventory (LCI) input data. The aim of the article is to define a BIM data structure for LCI purposes. The new methodology is based on standardization of non-graphic information model data structure called SNIM. Advantages of the proposed methodology have been demonstrated on the case study. These results are useful for expanding the BIM model with new data necessary for further LCA calculations.


Sign in / Sign up

Export Citation Format

Share Document