scholarly journals STUDYING ON FAILURE MECHANISM OF 2D GRANULAR COLUMNS: NUMERICAL RESULTS

2020 ◽  
Vol 57 (6A) ◽  
pp. 88
Author(s):  
Cuong Tien NGUYEN

The failure mechanism of granular columns and the characteristics of this failure flows have been intersted in researching in recent years. In particular, the experiments in failure mechanism and failure flow of 2D granular column are not often 2D standard. Therefore, Cuong T. Nguyen et al. (2015) conducted research this problem based on 2D standard in the laboratory and developed a numerical computation model using SPH (Smooth Particles Hydrodynamics) method (Cuong T. Nguyen et al., 2017). This model has proven the reliability by verification of calculation and experimental results. In this paper, the developed numerical model is used to perform a series of numerical experiments that some are difficult or impossible to obtain accurate results by physical experiment model to re-examine the previously identified characteristics and find out the rules more general of this failure flow.

2020 ◽  
Vol 57 (6A) ◽  
pp. 88
Author(s):  
Cuong Tien NGUYEN

The failure mechanism of granular columns and the characteristics of this failure flows have been intersted in researching in recent years. In particular, the experiments in failure mechanism and failure flow of 2D granular column are not often 2D standard. Therefore, Cuong T. Nguyen et al. (2015) conducted research this problem based on 2D standard in the laboratory and developed a numerical computation model using SPH (Smooth Particles Hydrodynamics) method (Cuong T. Nguyen et al., 2017). This model has proven the reliability by verification of calculation and experimental results. In this paper, the developed numerical model is used to perform a series of numerical experiments that some are difficult or impossible to obtain accurate results by physical experiment model to re-examine the previously identified characteristics and find out the rules more general of this failure flow.


2018 ◽  
Vol 22 (8) ◽  
pp. 2768-2795 ◽  
Author(s):  
Meysam Khodaei ◽  
Mojtaba Haghighi-Yazdi ◽  
Majid Safarabadi

In this paper, a numerical model is developed to simulate the ballistic impact of a projectile on a sandwich panel with honeycomb core and composite skin. To this end, a suitable material model for the aluminum honeycomb core is used taking the strain-rate dependent properties into account. To validate the ballistic impact of the projectile on the honeycomb core, numerical results are compared with the experimental results available in literature and ballistic limit velocities are predicted with good accuracy. Moreover, to achieve composite skin material model, a VUMAT subroutine including damage initiation based on Hashin’s seven failure criteria and damage evolution based on MLT approach modulus degradation is used. To validate the composite material model VUMAT subroutine, the ballistic limit velocities of the projectile impact on the composite laminates are predicted similar to the numerical results presented by other researchers. Next, the numerical model of the sandwich panel ballistic impact at different velocities is compared with the available experimental results in literature, and energy absorption capacity of the sandwich panel is predicted accurately. In addition, the numerical model simulated the sandwich panel damage mechanisms in different stages similar to empirical observations. Also, the composite skin damages are investigated based on different criteria damage contours.


2020 ◽  
Vol 31 (09) ◽  
pp. 2050119
Author(s):  
Ahmet Mustafa Erer ◽  
Mukaddes Ökten Turacı

This paper was aimed to study of the wetting angle ([Formula: see text]) of Sn–Ag–Cu, Sn–([Formula: see text])Ag–0.5Cu–([Formula: see text])Bi and Sn–([Formula: see text])Ag–0.5Cu–([Formula: see text])In ([Formula: see text], 1 and 2 in wt.%) Pb-free solder alloy systems at various temperatures (250, 280 and 310∘C) on Cu substrate in Ar atmosphere. The new Sn–([Formula: see text])Ag–0.5Cu–xBi and Sn–([Formula: see text])Ag–0.5Cu[Formula: see text]([Formula: see text]) In systems, low Ag content quaternary Pb-free solder alloys, were produced by adding 0.5%, 1% and 2% Bi and In separately to the near-eutectic Sn-3[Formula: see text]wt.%Ag–0.5[Formula: see text]wt.%Cu (SAC305) alloy. The wetting angles of new alloys, Sn[Formula: see text]2.5[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt.%Cu[Formula: see text]0.5[Formula: see text]wt.%Bi (SAC-0.5Bi), Sn[Formula: see text]2[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt.%Cu[Formula: see text]1[Formula: see text]wt.%Bi(SAC-1Bi), Sn[Formula: see text]1[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt.%Cu[Formula: see text]2[Formula: see text]wt.%Bi(SAC-2Bi), Sn[Formula: see text]2.5[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt.%Cu[Formula: see text]0.5[Formula: see text]wt.%In (SAC-0.5In), Sn[Formula: see text]2[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt.%Cu[Formula: see text]1[Formula: see text]wt.%In (SAC-1In) and Sn[Formula: see text]1[Formula: see text]wt.%Ag[Formula: see text]0.5[Formula: see text]wt%.Cu[Formula: see text]2[Formula: see text]wt.%In (SAC-2In) were measured by sessile drop method. Experimental results showed that additions of Bi and In separately to SAC305 resulted in a continuous decrease in the [Formula: see text] up to 1[Formula: see text]wt.% above which the [Formula: see text] value was increased and it is appeared that a correlation among the [Formula: see text], alloys compositions and the test temperatures exists which recommended an empirical model to estimate the [Formula: see text] at a given Bi and In content and temperature for a given alloy systems. The numerical model estimates the [Formula: see text] understandably well with the present work.


Author(s):  
Lionel Manin ◽  
Daniel Play ◽  
Patrick Soleilhac

Abstract The behavior of timing belts used in automotive applications have to be defined and predicted at the preliminary design phases. Numerical simulations replace progressively experimental determinations that are time and money consuming. The object of the work was to qualify from experimental results a timing belt drive numerical model. The model simulates the dynamic behavior versus time of any kind of tooth belt power transmissions. The model architecture, originalities and capabilities have been already presented, and the purpose is now to compare in details numerical and experimental results. The experimental qualification has been carried out on a laboratory test bench with a medium size engine valve controlled distribution made of 3 pulleys and a tensioner. Tensions, camshaft torque, pulleys speeds and angular acylisms, dynamic transmission error between camshaft and crankshaft pulleys have been measured. Numerous tests have been made for different running conditions by changing : speed, angular acyclism, camshaft torque, setting tension. Several phenomena and influence of parameters have been identified, as the pulley eccentricity effect on camshaft torque, span tensions, and transmission error. Part of the experimental results are used as entries of the model : camshaft torque, crankshaft instantaneous speed, transmission error due to pulley eccentricities. Further, comparisons with the numerical results were made. Experimental and numerical results of tension, angular acyclism, dynamic transmission error, versus operation time are compared for the different tests performed. The agreement is good and shows that the model developed allows to simulate dynamic behavior of timing belt with high degree of confidence.


Author(s):  
Iva´n D. Bedoya ◽  
Samveg Saxena ◽  
Francisco J. Cadavid ◽  
Robert W. Dibble

This study investigates the effects of biogas composition on combustion stability for a purely biogas fueled HCCI engine. Biogas is one of the most promising renewable fuels for Combined Heat and Power systems driven by internal combustion engines. However, the high content of CO2 in biogas composition leads to low thermal efficiencies in spark ignited and dual fuel compression ignited engines. The study is divided into two parts: first experimental results on a biogas-fueled HCCI engine are used to validate a numerical model, and second the model is used to investigate how biogas composition impacts combustion stability. In the first part of the study, experimental analysis of a 4 cylinder, 1.9 L Volkswagen TDI Diesel engine running with biogas in HCCI mode has shown high gross indicated mean effective pressure (close to 8 bar), high gross indicated efficiency (close to 45%) and ultra-low NOx emissions below the US2010 limit (0.27 g/kWh). An inlet absolute pressure of 2 bar and inlet temperature of 473 K (200°C) were required for allowing HCCI combustion with a biogas composition of 60% CH4 and 40% CO2 on a volumetric basis. However, slight changes in inlet pressure and temperature caused large changes in cycle-to-cycle variations at low equivalence ratios and large changes in ringing intensity at high equivalence ratios. A numerical model is validated against these experimental results. In the second part of the study, the numerical results for varied biogas composition show that at high load limit, higher contents of CH4 in biogas composition allow advanced combustion and increased burning rates of the biogas air mixture. Higher contents of CO2 in biogas composition allow lowered ringing intensities with moderate decrease in the indicated efficiency and power output. NOx emissions are not highly affected by biogas composition, while CO and HC emissions tend to increase with higher contents of CO2. According with the numerical results, biogas composition is an effective strategy to control the onset of combustion and combustion phasing of HCCI engines running biogas, allowing more stabilized combustion at low equivalence ratios and safe operation at high equivalence ratios. The main advantages of using biogas fueled HCCI engines in CHP systems are the low sensitivity of power output and indicated efficiency to biogas composition, as well as the ultra low NOx emissions achieved for all tested compositions.


2014 ◽  
Vol 578-579 ◽  
pp. 505-508
Author(s):  
Shao Qin Zhang ◽  
Lei Wu

In the present paper, we investigate the effect of a padding-plate on the behavior of extended end-plate semi-rigid connections. The numerical simulations were carried out for a standard extended end-plate connection joint without padding-plate and two connection joints with 4mm and 6mm thick padding-plates. The existing experimental results verified the validity of the numerical model. The numerical results have shown that a thin padding-plate will more or less decline the carrying load capacity of the connection joint but greatly improve the connect ductility. Filling a thin padding-plate in the end-plate connection is feasible and brings the forewarning function.


Author(s):  
M. Hasanat Zaman ◽  
Ayhan Akinturk

In the present research, a 3D dispersive numerical model has been developed and utilized to study the modification of the wave field in the presence of offshore structure. The Alternating Direction Implicit (ADI) algorithm has been employed for the solution of the governing equations. Relevant experiments are carried out in the Offshore Engineering Basin (OEB) of National Research Council (NRC) Canada. OEB is a 3D heavy duty 75m × 32m × 2.8m test facility equipped with modern data acquisition and tracking devices to record experimental data. Total 10 wave probes are deployed to measure the data at different locations in the Basin. Later the numerical results are compared with the experimental results. The comparisons of the numerical results show great agreement with the experimental results.


2021 ◽  
Vol 36 (3) ◽  
pp. 165-176
Author(s):  
Kirill Nikitin ◽  
Yuri Vassilevski ◽  
Ruslan Yanbarisov

Abstract This work presents a new approach to modelling of free surface non-Newtonian (viscoplastic or viscoelastic) fluid flows on dynamically adapted octree grids. The numerical model is based on the implicit formulation and the staggered location of governing variables. We verify our model by comparing simulations with experimental and numerical results known from the literature.


2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


Sign in / Sign up

Export Citation Format

Share Document