scholarly journals Microbial Production of 2,3- Butanediol From Waste Glycerol

2017 ◽  
pp. 960-974
Author(s):  
S. Yankova ◽  
P. Begova ◽  
V. Beschkov

An inevitable waste from biodiesel production is glycerol, contaminated by alkaline catalyst, water and methanol and released in quite big amounts, exceeding its market demand. One way of its utilization is production of different bulk and fine chemicals, for example 2,3- butanediol. The latter is used as a precursor for manufacturing of plastics, synthetic rubber, some pharmaceuticals, etc. In the present paper the ability of the strain Klebsiella oxytoca VA 8391 to produce this compound under batch and fed-batch conditions was studied at initial glycerol concentrations between 10 and 30 g dm-3. Experiments have been carried out in shaking flasks. The bacteria cultivation was at 37oC and stirred conditions at 200 rpm, whereas the product formation was studied both under stirred and still conditions. It was found out that the used strain is capable to produce selectively 2,3- butanediol with very high yields of practical importance (up to 92 %) and no contamination by other products. The optimum glycerol concentration was 20 g dm-3. At higher initialconcentrations substrate inhibition started to occur. It was established that the studied fermentation process required aerobic bacteria cultivation followed by anoxic period of product formation by the developed culture. Only in this case high yields were attained.

2018 ◽  
Vol 8 (12) ◽  
pp. 2517 ◽  
Author(s):  
Lidia Stasiak-Różańska ◽  
Anna Berthold-Pluta ◽  
Pritam Dikshit

Waste glycerol is the main by-product generated during biodiesel production, in an amount reaching up to 10% of the produced biofuel. Is there any method which allows changing this waste into industrial valuable compounds? This manuscript describes a method for valorization of crude glycerol via microbial bioconversion. It has been shown that the use of free and immobilized biocatalysts obtained from Gluconobacter oxydans can enable beneficial valorization of crude glycerol to industrially valuable dihydroxyacetone. The highest concentration of this compound, reaching over 20 g·L−1, was obtained after 72 h of biotransformation with free G. oxydans cells, in a medium containing 30 or 50 g·L−1 of waste glycerol. Using a free cell extract resulted in higher concentrations of dihydroxyacetone and a higher valorization efficiency (up to 98%) compared to the reaction with an immobilized cell extract. Increasing waste glycerol concentration to 50 g·L−1 causes neither a faster nor higher increase in product yield and reaction efficiency compared to its initial concentration of 30 g·L−1. The proposed method could be an alternative for utilization of a petrochemical waste into industry applicated chemicals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Xu ◽  
Markus Alahuhta ◽  
Patrick Hewitt ◽  
Nicholas S. Sarai ◽  
Hui Wei ◽  
...  

Cell free biocatalysis is showing promise as a replacement or complement to conventional microbial biocatalysts due to the potential for achieving high yields, titers, and productivities. However, there exist several challenges that need to be addressed before its broader industrial adoption is achieved. New paradigms and innovative solutions are needed to overcome these challenges. In this study we demonstrate high levels of glycerol conversion to 1,3-propanediol using a self-assembling metabolic pathway leveraging the arraying strategy (protein scaffolds) used by thermophilic cellulolytic bacteria to assemble their biomass degrading enzymes. These synthetic metabolons were capable of producing 1,3-PDO at a yield more than 95% at lower glycerol concentration and close to 70% at higher concentrations at a higher productivity rate than the equivalent microbial strain. One of the benefits of our approach is the fact that no enzyme purification is required, and that the assembly of the complex is accomplished in vivo before immobilization, while product formation is conducted in vitro. We also report the recovery of enzymatic activity upon fusion enzymes binding to these protein scaffolds, which could have broader applications when assembling arrayed protein complexes.


2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.


2020 ◽  
Vol 9 (1) ◽  
pp. e99911672
Author(s):  
George Simonelli ◽  
José Mario Ferreira Júnior ◽  
Carlos Augusto de Moraes Pires ◽  
Luiz Carlos Lobato dos Santos

Biodiesel is a renewable and biodegradable biofuel, generally produced by the fatty materials transesterification. Due to its importance in the diversification of the energy matrix of countries, various studies have been carried out to improve its production process. One of the technologies developed is the use of co-solvents in the process. The co-solvents decrease the mass transfer resistance between the oil and the alcohol during the chemical reaction. In this paper, a review of the literature on the biodiesel production using co-solvents was presented. The research gathered information about various studies that are relevant to the theme, aiming to show the state of the art, the substances most used as co-solvents, and the conditions of the process variables that result in high yields of fatty acid methyl esters (FAME). In the homogeneous basic catalysis of vegetable oils, potassium hydroxide is the most used catalyst. Its range of application normally varies from 0.5% to 1.8% in relation to the mass of oil. The reaction time may vary from 10 minutes to 2 hours, the temperature from 25 °C to 100 °C, the molar ratio (MR), from 3:1 to 12:1, and the amount of 30% (w/w) co-solvent, or in some cases up to 0.7:1 co-solvent to alcohol molar ratio.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1085
Author(s):  
Shafaq Nisar ◽  
Muhammad Asif Hanif ◽  
Umer Rashid ◽  
Asma Hanif ◽  
Muhammad Nadeem Akhtar ◽  
...  

The effective transesterification process to produce fatty acid methyl esters (FAME) requires the use of low-cost, less corrosive, environmentally friendly and effective catalysts. Currently, worldwide biodiesel production revolves around the use of alkaline and acidic catalysts employed in heterogeneous and homogeneous phases. Homogeneous catalysts (soluble catalysts) for FAME production have been widespread for a while, but solid catalysts (heterogeneous catalysts) are a newer development for FAME production. The rate of reaction is much increased when homogeneous basic catalysts are used, but the main drawback is the cost of the process which arises due to the separation of catalysts from the reaction media after product formation. A promising field for catalytic biodiesel production is the use of heteropoly acids (HPAs) and polyoxometalate compounds. The flexibility of their structures and super acidic properties can be enhanced by incorporation of polyoxometalate anions into the complex proton acids. This pseudo liquid phase makes it possible for nearly all mobile protons to take part in the catalysis process. Carbonaceous materials which are obtained after sulfonation show promising catalytic activity towards the transesterification process. Another promising heterogeneous acid catalyst used for FAME production is vanadium phosphate. Furthermore, biocatalysts are receiving attention for large-scale FAME production in which lipase is the most common one used successfully This review critically describes the most important homogeneous and heterogeneous catalysts used in the current FAME production, with future directions for their use.


2020 ◽  
Vol 16 ◽  
pp. 100250
Author(s):  
Guilherme Silva Torrezan ◽  
Carlos Roberto Polaquini ◽  
Marcelo Freitas Lima ◽  
Luis Octavio Regasini

RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 36031-36041
Author(s):  
Gopinadh Meera ◽  
K. R. Rohit ◽  
Salim Saranya ◽  
Gopinathan Anilkumar

Microwave assisted synthesis of N-heterocycles with short reaction time, high yields and high product purities along with a decrease in the rate of by-product formation.


2020 ◽  
Vol 7 (3) ◽  
pp. 259-266
Author(s):  
Xue-Lian Li ◽  
Quan Zhou ◽  
Shen-Xi Pan ◽  
Yu He ◽  
Fei Chang

: Glycerol is an organic polyol compound, and is an important raw material with extensive applications in daily/petrochemical and pharmaceutical industry. Glycerol is typically obtained by propylene chlorination, while the method used is complicated process and requires high energy consumption. Interestingly, glycerol is recognized as a major by-product of biodiesel production. Approximately 100 kg of glycerol is yielded for 1 tonne of biodiesel production. With the rapid development of the biodiesel industry, glycerol production capacity has been a serious surplus. This review introduces the selective conversion of glycerol into a variety of value-added chemicals such as propylene glycol, propanol, glyceraldehyde, and dihydroxyacetone via selective hydrogenation and oxidation, as well as hydrocarbons and ethers via pyrolysis, gasification and etherification, respectively. The efficiency of different types of catalysts and the influence of reaction parameters on the valorisation of glycerol have been elucidated. Emphasis is also laid on the study of catalytic mechanisms and pathways for some specific reactions.


Sign in / Sign up

Export Citation Format

Share Document