scholarly journals MILK LIPIDS AND SUBCLINICAL MASTITIS

2021 ◽  
Vol 15 (2) ◽  
Author(s):  
V. Danchuk ◽  
V. Ushkalov ◽  
S. Midyk ◽  
L. Vigovska ◽  
O. Danchuk ◽  
...  

This article deals with the process of obtaining quality raw milk by analyzing its lipid composition. The lipid composition of raw milk depends on many factors, among which, first of all, is the species, the composition of the diet and the physiological state of the breast. In recent years, a large amount of data has accumulated on the fluctuations of certain lipid parameters of milk depending on the type, age, lactation, diet, time of year, exercise, animal husbandry technology, physiological state of the lactating organism in general and breast status in particular. Factors of regulation of fatty acid composition of raw milk: genetically determined parameters of quality and safety; fatty acid composition of the diet; synthesis of fatty acids by microorganisms of the digestive tract; synthesis of fatty acids in the breast; physiological state of the breast. The milk of each species of productive animals has its own specific lipid profile and is used in the formulation of certain dairy products to obtain the planned technological and nutritional parameters. Diagnosis of productive animals for subclinical mastitis involves the use of auxiliary (thermometry, thermography, electrical conductivity) and laboratory research methods: counting the number of somatic cells; use of specialized tests; microbiological studies of milk; biochemical studies of milk. The biochemical component in the diagnosis of subclinical forms of mastitis is underestimated. An increase in body temperature implies an increase in the intensity of heat release during the oxidation of substrates, sometimes due to a decrease in the intensity of synthesis of energy-intensive compounds. There are simply no other sources of energy in the body. The situation is the same with certain parts of the metabolism, which are aimed at the development of protective reactions to the etiological factor aimed at the defeat of the breast. That is why the biochemical composition of breast secretions in the absence of clinical signs of mastitis undergoes biochemical changes and the task of scientists is to develop mechanisms for clear tracking of such changes, identification of animals with subclinical forms of mastitis and effective treatment.

1993 ◽  
Vol 56 (4) ◽  
pp. 302-305 ◽  
Author(s):  
V. K. JUNEJA ◽  
P. M. DAVIDSON

The sensitivity of Listeria monocytogenes Scott A and ATCC 19114 to antimicrobial compounds was altered when bacterial membrane lipid composition was modified by growth in the presence of added fatty acids. Analysis of cellular fatty acid composition by gas-liquid chromatography indicated that L. monocytogenes Scott A cells contained 0.97, 2.32, 0.81, and 0.72% (relative) of C14:0, C16:0, C18:0, and C18:l, respectively. In the presence of exogenously supplied C14:0, C16:0, C18:0, and C18:l, the percentages increased to 14.03, 30.92, 16.30, and 27.90%. Average MICs for L. monocytogenes Scott A and ATCC 19114 to sodium chloride, tertiary butylhydroquinone, methyl paraben, and propyl paraben were 10.0%, 81, 1406, and 544 μg/ml, respectively. Growing either strain in the presence of 50 μg/ml of either exogenously added C14:0 or C18:0 fatty acids increased their resistance to the four antimicrobial compounds. However, growth in the presence of C18:1 led to increased sensitivity to the antimicrobial agents. The results indicate that the susceptibility of L. monocytogenes to antimicrobial agents is related to the lipid composition of the cell membrane. Consequently, food preservation processes which alter fatty acid composition of L. monocytogenes could result in changes in antimicrobial susceptibility.


1997 ◽  
Vol 82 (6) ◽  
pp. 1911-1916 ◽  
Author(s):  
William E. Connor ◽  
Don S. Lin ◽  
Martha Neuringer

Abstract We previously reported that the sperm of rhesus monkeys and humans uniquely contain large amounts of desmosterol not found in other tissues and have a high concentration of the highly polyunsaturated n-3 fatty acid, docosahexaenoic acid (22:6 n-3). However, the lipid composition of the testis, from which sperm originate, is unknown. During puberty, the testis undergoes remarkable morphological changes as testosterone levels rise and sperm production begins. We hypothesized that testicular maturation might also involve dramatic changes in lipid composition. Accordingly, we characterized the sterol and fatty acid composition of the testis of rhesus monkeys throughout the lifespan, from birth to old age. Although the cholesterol content in the testis remained relatively unchanged throughout life, the desmosterol content first decreased from 59 μg/g in infants to 6 μg/g in prepubertal monkeys, increased to 83 μg/g during puberty, and reached a plateau of 248 μg/g in the young adult, where it remained into old age. The polyunsaturated fatty acid composition of the testis also changed markedly. Docosahexaenoic acid (22:6 n-3) increased from 5.1% of total fatty acids in infants and juveniles to 18.1% in postpubertal young adults. Although some n-6 fatty acids, arachidonic (20:4 n-6) and linoleic (18:2 n-6), decreased from 16.0% and 10.0% in prepubertal juveniles, respectively, to 7.1% and 3.3% in young adults; dihomogamma-linolenic acid (20:3 n-6), the precursor of 1 series PGs, increased greatly from 1.8% to 10.3%. Similar changes occurred in both membrane and storage lipids (phospholipids and triglycerides), respectively. After puberty, the testicular fatty acid pattern remained stable into old age. Our data demonstrated that puberty is accompanied by substantial changes in the lipid composition of the primate testis. These changes suggest that desmosterol and both n-3 and n-6 polyunsaturated fatty acids may have important roles in sexual maturation.


2001 ◽  
Vol 2001 ◽  
pp. 121-121
Author(s):  
R. O’Brian ◽  
N. Muturi ◽  
M. Birnie ◽  
M. Wallace ◽  
J. Struthers ◽  
...  

Dietary fatty acids have been shown to affect the activity of the immune system in a variety of species (Calder, 1998) although the exact mechanism by which they influence the nature of the immune response is unclear. The effect of dietary fatty acids on the fatty acid composition of intestinal mucosa is important since this tissue has a rapid turn over and is a major site of antigenic exposure and immune defence. The speed with which changes in dietary fatty acid intake are reflected in the fatty acid composition of cells and tissue of the body varies. In ruminants the development of a functional rumen greatly influences the nature of the fatty acids available for absorption from the small intestine, however, in pre-ruminant animals, milk may be used as a medium to supplement the diet with specific dietary fatty acids. This work was carried out to establish the extent to which different oil supplements could change the fatty acid composition of intestinal mucosa in milk fed pre-ruminant calves.


2020 ◽  
Vol 65 (No. 2) ◽  
pp. 51-57
Author(s):  
Hongtao Ren ◽  
Guang-Qin Zhang ◽  
Yong Huang ◽  
Xiao-Chan Gao

The effects of fatty acid composition in artificial feed on the change in the fatty acid composition of carp muscles and the relationship between Δ6-Fad and Elovl5 genes participating in the regulation of fatty acid synthesis were studied. Juveniles were fed three semi-purified diets (D1–D3) for 6 weeks with different lipid sources: D1, fish oil with high highly unsaturated fatty acids (HUFA); D2, corn oil with high linoleic acid (18:2n-6, LA), D3, linseed oil with high α-linolenic acid (18:3n-3, LNA); then, samples were taken to explore the molecular mechanism and the factors which affect the synthesis of carp HUFA. The content of LA and arachidonic acid (20:4n-6, AA) in common carp fed Diet 2 was higher than in carp receiving D3 (P < 0.05), but the contents of eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) were lower than in carp fed D1 and D2 (P < 0.05). The liver transcript abundance of Δ6-Fad and Elovl5 in fish fed D2 and D3 at the end of 6 weeks was generally higher than the abundance in the initial stage and in the fish fed D1 (P < 0.05). The results suggest that the common carp can biosynthesise HUFA, and the type and content of fatty acids in feed affected not only the composition and content of fatty acids in common carp muscles, but also the Δ6-Fad and Elovl5 gene expression involved in the biosynthesis of HUFA. Feeding high levels of n-3 HUFA diet can increase the body content of EPA and DHA in common carp. The results of this research may provide a theoretical basis for choosing an appropriate source of lipid for common carp feeds.  


2020 ◽  
Vol 16 (2) ◽  
pp. 213-219
Author(s):  
Arjina Parbin Sarkar ◽  
Sanjay Basumatary ◽  
Santanu Sarma ◽  
Sandeep Das

Background: Fishes are good sources of the fatty acids such as ω-3 and ω-6 polyunsaturated fatty acids, and fat-soluble vitamins for human consumption which play vital roles for various biological processes in the body and help in the proper growth and prevention of diseases. Objective: The objective of the present study was to determine the fatty acid composition, cholesterols, triglyceride and vitamin contents of some selected fishes from Hel river, Assam, India. Methods: Fatty acid composition of fish species was examined using gas chromatography-mass spectrometry, lipid components were determined following the reported methods and vitamins A and D contents were investigated by reversed-phase high-performance liquid chromatography. Results: Fatty acid compositions varied from 51.20-89.47% of saturated fatty acids, 0.27-19.68% of monounsaturated fatty acids and 1.75-30.76% of polyunsaturated fatty acids. Eicosapentaenoic acid and docosahexaenoic acid ranged from 0.54-22.30% and 1.26-18.85%, respectively. The fish species showed varying amounts of lipid components. The vitamins A and D were found in the range of 15.85-1287.0 μg/100 g and 45.0-677.24 μg/100 g, respectively. Conclusion: The fish species of this study are found rich in ω-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid along with noticeable amounts of vitamins A and D. Hence, these fish species have the potentials to serve as the natural dietary supplements for ω-3 fatty acids and other nutrients.


Author(s):  
Masatoshi Mita ◽  
Mariko Deguchi ◽  
Yuichi Sasayama

A large quantity of triglyceride was detected histochemically in nutrient-deposit cells of the trophosome in the beard worm (Oligobrachia mashikoi). The lipid extracted from the trophosome was composed of triglyceride, several kinds of phospholipid, free fatty acid, cholesterol, and cholesterol ester. The fatty acid of the triglyceride was comprised mainly of a monoenoic type, such as palmitoleic acid (16:1) and oleic acid (18:1), which accounted for 31% and 37% of the total fatty acids, respectively. In addition, in blood triglyceride, the fatty acid composition was almost the same.


2003 ◽  
Vol 70 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Chakra Wijesundera ◽  
Zhiping Shen ◽  
William J Wales ◽  
Dawn E Dalley

Two experiments were undertaken to determine the effects of cereal grain and fibre (hay or straw) supplements on the fatty acid composition of milk fat of grazing dairy cows in early lactation. In both experiments, grain supplements significantly increased (P<0·05) the proportion of the endogenously synthesized 10[ratio ]0–16[ratio ]0 fatty acids. Of the C18 acids, the proportion of 18[ratio ]0 and 18[ratio ]3 was significantly decreased (P<0·05) by grain supplementation, while that of 18[ratio ]2 was significantly increased (P<0·05). Irrespective of diet, 18[ratio ]1 trans-11 was the most dominant trans 18[ratio ]1 isomer in milk fat. In the first experiment, the proportions of the 18[ratio ]1 trans-11 isomer and conjugated linoleic acid (CLA, 18[ratio ]2 cis-9, trans-11) were highest for the pasture-only diets, and significantly (P<0·05) decreased with grain supplementation. The opposite result was observed in the second experiment, conducted in a different dairy region, suggesting that factors such as the quality of pasture on offer and the physiological state of the cow could affect the content of CLA and trans fatty acids in milk fat. In both experiments, there was a significant positive linear relationship between CLA and 18[ratio ]1 trans-11. Fibre supplements had little effect on the fatty acid composition of the milk.


2000 ◽  
Vol 28 (6) ◽  
pp. 907-910 ◽  
Author(s):  
F. Jemal ◽  
M. Zarrouk ◽  
M. H. Ghorbal

Seedlings (2 weeks old) of pepper (Capsicum annum) were grown in nutrient solution with added CdCl2 (10 or 50μM) for 7 days. In Cd-treated plants, changes in acyl lipids and fatty acid composition were investigated. Cd particularly lowered the amount of monogalactosyldiacylglycerol (MGDG) and enhanced accumulation of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine and phosphatidylglycerol] in leaves. In contrast, content of PC and galactolipids (MGDG and digalactosyldiacylglycerol) decreased in roots. Fatty acid composition of leaves was also changed by Cd addition to external medium, but no important changes occurred in roots. Levels of leaf polyunsaturated fatty acids, especially 18:3 and 16:3, were reduced. Lipid and fatty acid composition changes in roots are discussed in relation to Cd tolerance in pepper.


2006 ◽  
Vol 61 (1-2) ◽  
pp. 129-134 ◽  
Author(s):  
Salvatore De Rosaa ◽  
Katya Seizova ◽  
Zornitsa Kamenarska ◽  
Assia Petrova ◽  
Carmine Iodicea ◽  
...  

Abstract The sterol and fatty acid composition of three Adriatic Sea sponges (Geodia cydonium and two unidentified Tedania sp.), collected at the same time and same place, was established. Twenty-four sterols and forty fatty acids were identified. The identical ecological conditions, including the diet, allowed us to apply the results obtained for taxonomical conclusions, based on the biodiversity of the investigated sponges. On the basis of the sterol composition they can be separated into two groups: Tedania and Geodia sponges. The sterol and fatty acid composition indicates that the two investigated Tedania samples might be different species or subspecies


Sign in / Sign up

Export Citation Format

Share Document