scholarly journals Epigenetics of obesity

2020 ◽  
Vol 19 (6) ◽  
pp. 2632
Author(s):  
O. M. Drapkina ◽  
O. T. Kim

The pathophysiology of obesity is complex and includes changes in eating behavior, genetic, epigenetic, environmental factors, and much more. To date, ~40 genetic polymorphisms are associated with obesity and fat distribution. However, since these options do not fully explain the inheritance of obesity, other options, such as epigenetic changes, need to be considered. Epigenetic modifications affect gene expression without changing the deoxyribonucleic acid sequence. In addition, environmental exposure during critical periods of development can affect the epigenetic tags and lead to obesity. A deeper understanding of the epigenetic mechanisms underlying obesity can aid in prevention based on lifestyle changes. This review focuses on the role of epigenetic modifications in the development of obesity and related conditions.

2016 ◽  
Vol 371 (1688) ◽  
pp. 20150114 ◽  
Author(s):  
Nancy G. Forger

Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.


Genetika ◽  
2019 ◽  
Vol 51 (3) ◽  
pp. 975-994
Author(s):  
Mila Glavaski ◽  
Karmen Stankov

The term epigenetics refers to heritable changes in gene expression that are not caused by modifications in DNA sequence. Epigenetic changes are DNA methylation, histone modifications, nucleosome positioning, and non-coding RNA (including microRNA) mediated modifications. Epigenetic mechanisms are involved in malignant diseases, imprinting defects, and some hereditary diseases. Recent research explained the role of epigenetic disorders in infections, autoimmune, neurodegenerative and bone diseases, as well as in psoriasis, endometriosis, and polycystic ovary syndrome. Epigenetic modifications have a potential clinical application as diagnostic and prognostic biomarkers, and also as therapeutic targets in oncology, endocrinology, cardiology, and neuropsychiatry. Stress, anxiety, depression, emotions and many other psychological factors may affect epigenetic mechanisms. Influence of preconception parental stress exposure transmits to the next generation through epigenetic changes, as direct results of prenatal and postnatal environmental factors. Epigenetic changes identify environmental factors which affect health and cause disease onset. Milk is the sophisticated system of communication between mother and infant, operating via epigenetic mechanisms. Lifelong consumption of bovine milk causes epigenetic disorders. Recent studies provide important information about the role of bioactive dietary nutrients which modify epigenome in malignancy prevention and therapy. Any interruption in the balance of intestinal microbiota initiates aberrant epigenetic modifications. Epigenetic patterns act as the ?molecular watches? and they play the central role in the establishment of biological rhythms. Epigenetic mechanisms can determine the result of assisted reproductive technology and genetic engineering. The extensive research about the association of epigenetics and pharmacology led to the development of pharmacoepigenetics. All these results emphasize the importance of further research which will take into account all factors that may affect epigenetic mechanisms.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jonathan D. Licht ◽  
Richard L. Bennett

Abstract Background Epigenetic mechanisms regulate chromatin accessibility patterns that govern interaction of transcription machinery with genes and their cis-regulatory elements. Mutations that affect epigenetic mechanisms are common in cancer. Because epigenetic modifications are reversible many anticancer strategies targeting these mechanisms are currently under development and in clinical trials. Main body Here we review evidence suggesting that epigenetic therapeutics can deactivate immunosuppressive gene expression or reprogram tumor cells to activate antigen presentation mechanisms. In addition, the dysregulation of epigenetic mechanisms commonly observed in cancer may alter the immunogenicity of tumor cells and effectiveness of immunotherapies. Conclusions Therapeutics targeting epigenetic mechanisms may be helpful to counter immune evasion and improve the effectiveness of immunotherapies.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2019 ◽  
Vol 15 (4) ◽  
pp. 887-895 ◽  
Author(s):  
Elham Hosseini ◽  
Maryam Shahhoseini ◽  
Parvaneh Afsharian ◽  
Leila Karimian ◽  
Mahnaz Ashrafi ◽  
...  

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2016 ◽  
Author(s):  
Meghan M Kozub ◽  
Ryan M Carr ◽  
Gwen L Lomberk ◽  
Martin E Fernandez-Zapico

Histone-modifying enzymes play a critical role in chromatin remodeling and are essential for influencing several genome processes such as gene expression and DNA repair, replication, and recombination. The discovery of lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, dramatically revolutionized research in the field of epigenetics. LSD1 plays a pivotal role in a wide range of biological operations, including development, cellular differentiation, embryonic pluripotency, and disease (for example, cancer). This mini-review focuses on the role of LSD1 in chromatin regulatory complexes, its involvement in epigenetic changes throughout development, and its importance in physiological and pathological processes.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
K. González-Becerra ◽  
O. Ramos-Lopez ◽  
E. Barrón-Cabrera ◽  
J. I. Riezu-Boj ◽  
F. I. Milagro ◽  
...  

Abstract Background Chronic illnesses like obesity, type 2 diabetes (T2D) and cardiovascular diseases, are worldwide major causes of morbidity and mortality. These pathological conditions involve interactions between environmental, genetic, and epigenetic factors. Recent advances in nutriepigenomics are contributing to clarify the role of some nutritional factors, including dietary fatty acids in gene expression regulation. This systematic review assesses currently available information concerning the role of the different fatty acids on epigenetic mechanisms that affect the development of chronic diseases or induce protective effects on metabolic alterations. Methods A targeted search was conducted in the PubMed/Medline databases using the keywords “fatty acids and epigenetic”. The data were analyzed according to the PRISMA-P guidelines. Results Consumption fatty acids like n-3 PUFA: EPA and DHA, and MUFA: oleic and palmitoleic acid was associated with an improvement of metabolic alterations. On the other hand, fatty acids that have been associated with the presence or development of obesity, T2D, pro-inflammatory profile, atherosclerosis and IR were n-6 PUFA, saturated fatty acids (stearic and palmitic), and trans fatty acids (elaidic), have been also linked with epigenetic changes. Conclusions Fatty acids can regulate gene expression by modifying epigenetic mechanisms and consequently result in positive or negative impacts on metabolic outcomes.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Emilie Castonguay ◽  
Bernard Angers

Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae) provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.


Sign in / Sign up

Export Citation Format

Share Document