scholarly journals Assessment of Heavy Metals Concentration in Soil and Plants from Baia Mare Area, NW Romania

Author(s):  
Alina DONICI ◽  
Claudiu Ioan BUNEA ◽  
Anamaria CĂLUGĂR ◽  
Eugenia HARSAN ◽  
Ionut RACZ ◽  
...  

The results showed diverse patterns of Pb, Cd, Zn, Co, Cu, Ni, Mn, Cr and Sn, in case of Pb in all areas exceeded the M.L.A (average 32.59 mg/kg while M.L.A. = 20 mg/kg), other elements shows high concentration that exceed the M.L.A. for Ferneziu and Săsar area. In the case of plant material also records exceedances of the M.L.A for Ferneziu and Săsar area, but in the Dura area there were no overtaking of M.L.A.

2021 ◽  
Vol 29 (2) ◽  
pp. 88-93
Author(s):  
О. A. Havryliuk ◽  
V. M. Hovorukha ◽  
A. V. Sachko ◽  
G. V. Gladka ◽  
I. O. Bida ◽  
...  

Contamination of soils with heavy metals leads to reduction of soil fertility, destruction of natural ecosystems and detrimental effects on the health of society by increasing content of metals in the food chains from microorganisms to plants, animals and humans. Bioremediation is one of the most promising and cost-effective methods of cleaning soils polluted with toxic metals. According to current researchers, microorganisms and plants have the genetic potential to remove toxic metals from contaminated sites. The method of thermodynamic prediction was used to theoretically substantiate the mechanisms of interaction of soil microorganisms and plants with heavy metals. According to the our prediction, exometabolite chelators of anaerobic microorganisms may increase the mobility of metals and thereby contribute to the active transport of metals and their accumulation in plants. Plants of Nicotiana tabacum L. of Djubek cultivar were used as plant material for the current investigation. The examined toxicants were heavy metals, namely cobalt (II), nickel (II), chromium (VI), copper (II) and cadmium (II). The aqueous solutions of metal salts were added to the boxes after two months of plants growing to the final super-high concentration – 500 mg/kg of absolutely dry weight of soil. Quantitative assessments of copper and chromium-resistant microorganisms were made by cultivation on agar nutrient medium NA with a gradient of Cu(II) and Cr(VI). The concentration of metals in soil and plant material (leaves, stems and roots) was determined by atomic absorption method. The study revealed that heavy metals inhibited the growth of the examined tobacco plants. This was expressed by the necrosis of plant tissues and, ultimately, their complete death. Despite this, all investigated heavy metals were accumulated in plant tissues during 3–7 days before death of plants. The uptake of metals was observed in all parts of plants – leaves, stems and roots. The highest concentrations of Co(II), Ni(II), Cd(II), Cr(VI) were found in the leaves, Cu(II) – in the roots. The results show that the bioremoval efficiency of the investigated metals ranged 0.60–3.65%. Given the super-high initial concentration of each of the metals (500 mg/kg), the determined removal efficiency was also high. Cadmium was the most toxic to plants. Thus, the basic points of the thermodynamic prognosis of the possibility of accumulation of heavy metals by phytomicrobial consortium were experimentally confirmed on the example of N. tabacum plants and metal-resistant microorganisms. The study demonstrated that despite the high initial metals concentration, rate of damage and death of plants, metals are accumulated inplant tissues in extremely hight concentrations. Soil microorganisms were observed to have high adaptation potencial to Cu(II) and Cr(VI). In anaerobic conditions, microorganisms presumably mobilize heavy metals, which later are absorbed by plants. The obtained results are the basis for the development of environmental biotechnologies for cleaning contaminated soils from heavy metal compounds.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 1 ◽  
pp. 264
Author(s):  
Md Didarul Islam ◽  
Ashiqur Rahaman ◽  
Fahmida Jannat

This study was based on to determine the concentration of macro and micro nutrients as well as toxic and nontoxic heavy metals present in the chicken feed available in Dhaka city of Bangladesh. All macro nutrients, if present in the feed at high concentration have some adverse effect, at the same time if this nutrient present in the feed at low concentration this have some adverse effect too. So that this nutrient level should be maintained at a marginal level. On the other side toxic heavy metals if present in the feed at very low concentration those can contaminate the total environment of the ecosystem. In this study six brand samples (starter, grower, finisher and layer) which was collected from different renowned chicken feed formulation industry in Bangladesh. Those samples were prepared for analysis by wet ashing and then metals were determined by Atomic Absorption Spectroscopy. It was found that 27.7 to 68.4, 57.3 to 121.9, 0.21 to 4.1, 0.32 to 2.1, 0.11 to 1.58, 0.28 to 2.11 and 0.28 to 1.78 for zinc, iron, copper, mercury, cadmium, nickel and cobalt respectively. It was found that essential macro and micro nutrients were present in the feed in low concentration on the other side mercury was present in high concentration in the feed samples.


2021 ◽  
Author(s):  
Luigimaria Borruso ◽  
Alice Checcucci ◽  
Valeria Torti ◽  
Federico Correa ◽  
Camillo Sandri ◽  
...  

AbstractHere, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris’ faeces shared about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting, once again, the potential consequent impacts on the wider habitat.


2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


2016 ◽  
Vol 29 (1) ◽  
pp. 23-26
Author(s):  
M Iqbal Hossain ◽  
M Nural Anwar

The aim and objective of the study was to isolate and characterize heavy metal tolerant microorganisms from tannery effluents. Six effluent samples were collected aseptically and their physical and chemical parameters were determined. A total of 40 bacterial colonies were isolated from these effluent samples. Among them, six bacterial isolates were characterized provisionally as Alcaligenes aquamarinus, Bacillus coagulans, Bacillus firmus, Enterobacter cloacae, Pseudomonas alcaligens and Pseudomonas mendocina based on morphological, cultural and biochemical characteristics. The survibality and tolerance to heavy metals (Cr and Cu) of these isolates were examined. All the isolates were found to grow at high concentration of CuSO4 (95ppm/ml) and varying degrees of chromium (K2Cr2O7). The highest tolerance was shown by Alcaligenes aquamarinus. These heavy metal tolerant organisms could be potential agents for bioremediation of heavy metals polluted environment.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 23-26


2017 ◽  
Vol 6 (2) ◽  
pp. 91-95
Author(s):  
Nadezhda Konstantinovna Khristoforova ◽  
Anna Dmitrievna Kobzar

The paper contains the study of heavy metals in three species - Sargassum miyabei , Sargassum pallidum , Cystoseira crassipes in the coastal waters of the Posyet Bay. The analysis of the spatial distribution of trace elements revealed the highest contents of zinc, copper and nickel in the Troitsa Bight, due to recreational pressure and a high concentration of nickel and cadmium in Sivuchya Bight that was caused by transboundary atmospheric transport. All of detected concentrations exceed natural background values for the North-Western part of the Sea of Japan. The authors show that there has been a distinct change in the environmental situation in the the Posyet Bay since 1998: the concentration of lead has sharply decreased, the content of zinc, copper and cadmium has decreased, it could be connected with influence reduction in the free economic zone, located on the Chinese side on the Tumannaya River.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Kamala Gupta ◽  
Chitrita Chatterjee ◽  
Bhaskar Gupta

AbstractThe present study was conducted to determine the culturable bacterial profile from Kestopur canal (Kolkata, India) and analyze their heavy metal tolerance. In addition to daily sewage including solid and soluble wastes, a considerable load of toxic metals are released into this water body from industries, tanneries and agriculture, household as well as health sectors. Screening out microbes from such an environment was done keeping in mind their multifunctional application especially for bioremediation. Heavy metals are major environmental pollutants when present in high concentration in soil and show potential toxic effects on growth and development in plants and animals. Some edible herbs growing in the canal vicinity, and consumed by people, were found to harbour these heavy metals at sub-toxic levels. The bioconcentration factor of these plants being <1 indicates that they probably only absorb but not accumulate heavy metals. All the thirteen Grampositive bacteria isolated from these plants rhizosphere were found to tolerate high concentration of heavy metals like Co, Ni, Pb, Cr, Fe. Phylogenetic analysis of their 16S rDNA genes revealed that they belonged to one main taxonomic group — the Firmicutes. Seven of them were found to be novel with 92–95% sequence homology with known bacterial strains. Further microbiological analyses show that the alkaliphilic Bacillus weihenstephanensis strain IA1 and Exiguobacterium aestuarii strain CE1, with selective antibiotic sensitivity along with high Ni2+ and Cr6+ removal capabilities, respectively, can be prospective candidates for bioremediation.


2016 ◽  
Vol 35 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Moshood Keke Mustapha ◽  
Joy Chinenye Ewulum

AbstractHeavy metals are present in low concentrations in reservoirs, but seasonal anthropogenic activities usually elevate the concentrations to a level that could become a health hazard. The dry season concentrations of cadmium, copper, iron, lead, mercury, nickel and zinc were assessed from three sites for 12 weeks in Oyun reservoir, Offa, Nigeria. Triplicate surface water samples were collected and analysed using atomic absorption spectrophotometry. The trend in the level of concentrations in the three sites is site C > B > A, while the trend in the levels of the concentrations in the reservoir is Ni > Fe > Zn > Pb > Cd > Cu > Hg. Ni, Cd, Pb and Hg were found to be higher than the WHO guidelines for the metals in drinking water. The high concentration of these metals was from anthropogenic watershed run-off of industrial effluents, domestic sewages and agricultural materials into the reservoir coming from several human activities such as washing, bathing, fish smoking, especially in site C. The health effects of high concentration of these metals in the reservoir were highlighted. Methods for the treatment and removal of the heavy metals from the reservoir during water purification such as active carbon adsorption, coagulation-flocculation, oxidation-filtration, softening treatment and reverse osmosis process were highlighted. Other methods that could be used include phytoremediation, rhizofiltration, bisorption and bioremediation. Watershed best management practices (BMP) remains the best solution to reduce the intrusion of the heavy metals from the watershed into the reservoir.


Sign in / Sign up

Export Citation Format

Share Document