scholarly journals A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan

2021 ◽  
Vol 49 (1) ◽  
pp. 12231
Author(s):  
Juan A. TORRES-RODRIGUEZ ◽  
Juan J. REYES-PÉREZ ◽  
Thelma CASTELLANOS ◽  
Carlos ANGULO ◽  
Evangelina E. QUIÑONES-AGUILAR ◽  
...  

Some synthetic fungicides have been currently prohibited due to their adverse effects; thus, searching for alternatives to decrease their application is a priority worldwide. An alternative to the application of synthetic fungicides is chitosan -a natural biopolymer- because of its biocompatibility, biodegradability, and bioactivity. Chitosan has been used in different industries, such as cosmetology, pharmaceutics, food, among others. In agriculture, it has been used as a resistance inductor and bio-fungicide because of its antimicrobial activity and for plant development as growth promoter. Although many works have been published on chitosan for its characteristics and mode of action, the direct effects on agriculture -both in plant and fruit phytopathogens- have not been reported. Therefore, the objective of this review is to summarize recent advances and achievements of chitosan application in agriculture with special attention to its antimicrobial properties and plant defence induction mechanisms.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Daniel Łowicki ◽  
Adam Huczyński

In this paper structural and microbiological studies on the ionophorous antibiotic monensin A and its derivatives have been collected. Monensin A is an ionophore which selectively complexes and transports sodium cation across lipid membranes, and therefore it shows a variety of biological properties. This antibiotic is commonly used as coccidiostat and nonhormonal growth promoter. The paper focuses on both the latest and earlier achievements concerning monensin A antimicrobial activity. The activities of monensin derivatives, including modifications of hydroxyl groups and carboxyl group, are also presented.


2021 ◽  
Author(s):  
Jamie Waterman ◽  
Ximena Cibils-Stewart ◽  
Casey Hall ◽  
Meena Mikhael ◽  
Christopher Cazzonelli ◽  
...  

<p>1) Crop loss due to insect herbivory is one of the largest challenges facing the agricultural industry. As herbivore populations continue to grow in light of global change, securing crop resources is becoming increasingly critical. Silicon (Si) has been shown to effectively mitigate the adverse effects of herbivores such as the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), in crop species (namely grasses), that have evolved the ability to uptake large amounts of Si through their roots and accumulate it in aboveground tissues. Nevertheless, the effectiveness of Si accumulation as a plant defence against herbivory in the short term, and its consequential effects on alternative defence responses, remain unclear.<br>2) We conducted two discrete experiments to determine the short-term dynamics of Si, chemical defences and resistance to herbivory in the model grass, Brachypodium distachyon: 1) Both Si-supplemented (+Si) and control (-Si) plants were treated with methyl jasmonate (MeJA) as a form of simulated herbivory and we measured the interplay of Si accumulation, the phytohormones jasmonic acid (JA) and salicylic acid (SA), and carbon-based defences over 24 hr. 2) We exposed H. armigera larvae to B. distachyon plants grown under three conditions: +Si, -Si, or treated with Si only once H. armigera feeding began. We measured the effect of short-term plant exposure to Si on H. armigera performance and plant resistance.<br>3) MeJA-induced Si accumulation occurred as early as 6 hr after treatment via increased JA concentrations. Si supplementation decreased SA concentrations, which could have implications on additional downstream defences. We show a trade-off between Si and phenolics in untreated plants, but this relationship was weakened upon MeJA treatment. Although foliar Si concentrations remained lower, within 72 hr of exposure to Si, plants obtained virtually the same level of resistance to H. armigera as plants exposed to Si for over 30 days. H. armigera feeding also accelerated Si deposition after 6 hr of exposure to Si, however, in as little as 24 hr, levels of Si deposition were similar to plants exposed to Si long term.<br>4) In addition to its well-documented role as a long-term defence against herbivores, we demonstrate that, over short-term temporal scales, Si accumulation responds to herbivore signals and impacts on plant defence machinery. Further, we provide novel evidence that plants can rapidly incorporate Si into their tissues to mitigate the adverse effects of herbivory as effectively as plants exposed to Si long term.</p>


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2021 ◽  
Vol 14 (2) ◽  
pp. 145
Author(s):  
Othman Al Musaimi ◽  
Danah Al Shaer ◽  
Fernando Albericio ◽  
Beatriz de la Torre

2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved 53 new drug entities, six of which fall in the peptides and oligonucleotides (TIDES) category. The number of authorizations for these kinds of drugs has been similar to that of previous years, thereby reflecting the consolidation of the TIDES market. Here, the TIDES approved in 2020 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects.


Author(s):  
Francisco Ramiro Boy ◽  
Rocío Casquete ◽  
Ana Martínez ◽  
María de Guía Córdoba ◽  
Santiago Ruíz-Moyano ◽  
...  

This study aims to evaluate the efficacy of two methods (agitation and ultra-sound) for extracting phenolic compounds from 15 native plants. Plant species collected in the Dehesa of Extremadura were used. The antioxidant, antihypertensive and antimicrobial activity of the phenolic extracts was investigated. Significantly different results were obtained when comparing the two extraction methods, with the highest concentrations of phenolic compounds found for ultrasound extraction. In addition, the extracts obtained for Cistus albidus, Cistus salviifolius, Rubus ulmifolius and Quercus ilex showed the highest concentrations of phenolic compounds. The antioxidant activity was higher in the extracts of Cistus and Q. ilex obtained by ultrasound, as was the antihypertensive activity. Antimicrobial activity was also higher in the extracts obtained by ultrasound from C. salviifolius and Q. ilex plants against bacteria and from Cistus ladanifer against yeasts. Therefore, it can be concluded that, with the ultrasound extraction of phenolic compounds from C. ladanifer, C. albidus and Q. ilex plants, it is possible to obtain extracts with important functional properties, so they could be studied for their use in food with the aim of obtaining healthy and safe products, favouring the sustainability of the environment of the Dehesa Extremeña.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1839
Author(s):  
Harlinda Kuspradini ◽  
Indah Wulandari ◽  
Agmi Sinta Putri ◽  
Sabeti Yulis Tiya ◽  
Irawan Wijaya Kusuma

Background: Litsea angulata is a plant species belonging to Lauraceae family that is distributed throughout Indonesia, Malaysia, and New Guinea. The seeds have been traditionally used by local people in Kalimantan, Indonesia for the treatment of boils; however, there is no information about the potency of its branch, bark and leaves yet. This study aimed to determine the antioxidant, antimicrobial activity as well as the phytochemical constituent of Litsea angulata branch, bark, and leaves. Methods: Extraction was performed by successive maceration method using n-hexane, ethyl acetate, and ethanol solvent. Antioxidant activity was evaluated by DPPH radical scavenging assay. The antimicrobial activity using the 96 well-plate microdilution broth method against Staphylococcus aureus and Streptococcus mutans. Results: Based on the phytochemical analysis, it showed that extract of L. angulata contains alkaloids, flavonoids, tannins, terpenoids, and coumarin. The results showed that all extracts of plant samples displayed the ability to inhibit DPPH free radical formation and all tested microorganisms. Conclusions: L. angulata contains secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, carotenoids, and coumarin. The antioxidant activity on different plant extracts was a range as very strong to weak capacity. All extracts in this study could inhibit the growth of S. aureus and S. mutans.


RSC Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 2673-2702 ◽  
Author(s):  
Anupam Roy ◽  
Onur Bulut ◽  
Sudip Some ◽  
Amit Kumar Mandal ◽  
M. Deniz Yilmaz

In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


Sign in / Sign up

Export Citation Format

Share Document