scholarly journals Structure and Antimicrobial Properties of Monensin A and Its Derivatives: Summary of the Achievements

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Daniel Łowicki ◽  
Adam Huczyński

In this paper structural and microbiological studies on the ionophorous antibiotic monensin A and its derivatives have been collected. Monensin A is an ionophore which selectively complexes and transports sodium cation across lipid membranes, and therefore it shows a variety of biological properties. This antibiotic is commonly used as coccidiostat and nonhormonal growth promoter. The paper focuses on both the latest and earlier achievements concerning monensin A antimicrobial activity. The activities of monensin derivatives, including modifications of hydroxyl groups and carboxyl group, are also presented.

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 865
Author(s):  
Ana Cristina Padilha Janini ◽  
Gabriela Fernanda Bombarda ◽  
Lauter Eston Pelepenko ◽  
Marina Angélica Marcano

Endodontic biomaterials have significantly improved dental treatment techniques in several aspects now that they can be used for vital pulp treatments, as temporary intracanal medication, in definitive fillings, in apical surgeries, and for regenerative procedures. Calcium silicate-based cement is a class of dental material that is used in endodontics in direct contact with the dental structures, connective tissue, and bone. Because the material interacts with biological tissues and stimulates biomineralization processes, its properties are of major importance. The main challenge in endodontic treatments is the elimination of biofilms that are present in the root canal system anatomical complexities, as it remains even after chemical-mechanical preparation and disinfection procedures. Thus, an additional challenge for these biomaterials is to exert antimicrobial activity while maintaining their biological properties in parallel. This article reviews the literature for studies considering the antimicrobial properties of calcium silicate-based dental biomaterials used in endodontic practice. Considering the reviewed studies, it can be affirmed that the reduced antimicrobial effect exhibited by calcium silicate-based endodontic materials clearly emphasizes that all clinical procedures prior to their use must be carefully performed. Future studies for the evaluation of these materials, and especially newly proposed materials, under poly-microbial biofilms associated with endodontic diseases will be necessary.


2019 ◽  
Vol 16 (1) ◽  
pp. 17-37 ◽  
Author(s):  
Jaskirat Kaur ◽  
Divya Utreja ◽  
Ekta ◽  
Nisha Jain ◽  
Shivali Sharma

Background:Heterocyclic compounds containing nitrogen have been known to possess a very important role in the field of medicinal chemistry. Indole and its derivatives displayed a wide range of biological properties such as anti-inflammatory, analgesic, anti-microbial, anti-convulsant, antidepressant, anti-diabetic, antihelmintic and anti-allergic activities etc. The diverse biological activities exhibited by compounds containing indole moiety has provided the impetus to explore its anti-microbial activity in order to save the valuable life of patients. </P><P> Objective: The review focuses on the advances in the synthesis of indole derivatives and antimicrobial properties exhibited by them.Conclusion:A great deal of work has been done in order to synthesize indole derivatives and to evaluate antimicrobial potential, as indicated by the review. The information provided in this article may be helpful for the researchers for the development of efficient antimicrobial drugs.


2021 ◽  
Vol 49 (1) ◽  
pp. 12231
Author(s):  
Juan A. TORRES-RODRIGUEZ ◽  
Juan J. REYES-PÉREZ ◽  
Thelma CASTELLANOS ◽  
Carlos ANGULO ◽  
Evangelina E. QUIÑONES-AGUILAR ◽  
...  

Some synthetic fungicides have been currently prohibited due to their adverse effects; thus, searching for alternatives to decrease their application is a priority worldwide. An alternative to the application of synthetic fungicides is chitosan -a natural biopolymer- because of its biocompatibility, biodegradability, and bioactivity. Chitosan has been used in different industries, such as cosmetology, pharmaceutics, food, among others. In agriculture, it has been used as a resistance inductor and bio-fungicide because of its antimicrobial activity and for plant development as growth promoter. Although many works have been published on chitosan for its characteristics and mode of action, the direct effects on agriculture -both in plant and fruit phytopathogens- have not been reported. Therefore, the objective of this review is to summarize recent advances and achievements of chitosan application in agriculture with special attention to its antimicrobial properties and plant defence induction mechanisms.


Author(s):  
Renata Choińska ◽  
Katarzyna Dąbrowska ◽  
Renata Świsłocka ◽  
Włodzimierz Lewandowski ◽  
Artur H. Świergiel

Purpose: Alpha-hydroxy acids (AHAs) are one of the classes of hydroxy acids being beneficial for human health. The manuscript summarizes the biological properties of two popular members of AHAs i.e. mandelic acid (MA) and gallic acid (GA) with particular emphasis on antimicrobial properties. Moreover, attempts to design of new derivatives improving the natural properties of AHAs by using the chemical and physical approach, are discussed. Methods: Antimicrobial properties of MA, an arylalkyl AHA containing phenyl group attached to α-carbon, and GA, an aromatic trihydroxybenzoic acid containing the phenolic ring and carboxylic acid functional group, and their derivatives against common human and plant pathogenic fungi have been reviewed. Results: The antimicrobial activity of MA and GA is a complex phenomenon strictly correlated with other properties exhibited by these acids e.g. pro-oxidative activity, hydrophobicity. In most cases, the acids derivatives exhibited higher antimicrobial activity than acids itself. This is probably because of the higher lipophilicity of moiety that allows better penetration through the cell membrane. Conclusion: MA and GA present an excellent health-promoting tool and are valuable starting materials for the design of new compounds such as metal complexes with alkali, or alkali earth metals. The lipophilic, antimicrobial, and pro-oxidative properties act synergistically supporting the pharmacological and therapeutic effect of acids and their derivatives.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 555
Author(s):  
Nikos Asoutis Didaras ◽  
Ioannis Kafantaris ◽  
Tilemachos G. Dimitriou ◽  
Chrysanthi Mitsagga ◽  
Katerina Karatasou ◽  
...  

Bee bread is the only fermented product of the beehive. It constitutes the main source of proteins, lipids, vitamins, and macro- and microelements in honeybee nutrition and it exerts antioxidant and antimicrobial properties, though research on these aspects has been limited so far. In this study 18 samples of Greek bee bread, two of which were monofloral, were collected during different seasons from diverse locations such as Crete and Mount Athos and were tested for their bioactivity. Samples were analyzed for their antibacterial properties, antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC). The antimicrobial activity of each sample was tested against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella typhimurium. Our data demonstrate that all samples exert inhibitory and most of them bactericidal activity against at least two pathogens. Furthermore, all samples exert significant antioxidant activity, where the monofloral Castanea Sativa sample demonstrated superior antioxidant activity. Nevertheless, the antioxidant and antimicrobial activity were not strongly correlated. Furthermore, machine learning methods demonstrated that the palynological composition of the samples is a good predictor of their TPC and ABTS activity. This is the first study that focuses on the biological properties of Greek bee bread and demonstrates that bee bread can be considered a functional food and a possible source of novel antimicrobial compounds.


2017 ◽  
Vol 39 (3) ◽  
pp. 188-194
Author(s):  
M.A. Gumenna ◽  
◽  
N.S. Klimenko ◽  
A.V. Stryutsky ◽  
D.M. Hodyna ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1629
Author(s):  
Giulia Neri ◽  
Enza Fazio ◽  
Antonia Nostro ◽  
Placido Giuseppe Mineo ◽  
Angela Scala ◽  
...  

Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.


Sign in / Sign up

Export Citation Format

Share Document