scholarly journals Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Shipra Tripathi ◽  
G. K. Mehrotra ◽  
P. K. Dutta

AbstractAntimicrobial packaging is one of the most promising active packaging systems. Antimicrobial packaging is the packaging system that is able to kill or inhibit spoilage and pathogenic microorganisms that are contaminating foods. A tremendous effort has been made over the last decade to develop and test films with antimicrobial properties to improve food safety and shelf life. For food preservation, chitosan films are very effective. Chitosan has widely been used in antimicrobial films, to provide edible protective coating, dipping and spraying for the food products due to its antimicrobial properties. Chitosan can be formed into fibers, films, gels, sponges, beads or nanoparticles. Chitosan films have been used as a packaging material for the quality preservation of a variety of food. Chitosan has great potential for a wide range of applications due to its biodegradability, biocompatibility, antimicrobial activity, non-toxicity and versatile chemical and physical properties. The present review outlines the preparation and antimicrobial activity of chitosan based films.


Author(s):  
Emine Arman Kandirmaz ◽  
◽  
Omer Bunyamin Zelzele ◽  

The use of edible biofilms in food packaging reduces the use of petrochemical polymers that are harmful to human health, such as PE, PP, PET. The second most common biopolymer in nature, chitosan is a nontoxic, nonantigenic, biocompatible and biodegradable polymer. Considering these features, it is frequently used in food packaging applications. Increasing needs for food amount and quality canalized food ındustry to fund in new packaging techniques that improve storage life and grade of foods. Active packaging systems, one of these methods, can be designed as a sensor, antimicrobial or antimigrant in order to extend the shelf life of the food product and to inform the shelf life in possible degradation. Essential oils, which are antimicrobial environmentally friendly packaging material additives, are used due to their effective biological activities. Essential oils that have known antimicrobial properties include lavender, rosemary, mint, eucalyptus and geranium. These oils are also edible. In this study, it is aimed to produce antimicrobial, ecofriendly, edible, printable biofilm for active packaging, using chitosan and peppermint essential oil. For this purpose, chitosan biofilms containing different rates (0, 1, 2.5, 5, 10%) of peppermint essential oil were produced by solvent casting method. Surface morphology were examined by SEM. The transparency of biofilms was determined by UV spectroscopy. Antimicrobial properties of the obtained films were determined against S. aureus and E. coli. Biofilms were printed with screen printing. The color, gloss, contact angle, surface tension values of all printed and unprinted samples were examined. As a result, chitosan biofilms which are loaded with peppermint essential oil were successfully produced. Biofilms are colorless, highly transparent and have good printability. It is concluded that the amount of peppermint essential oil increased inhibitory feature against S. aureus and E. coli. When the obtained results are examined, it is determined that the printable, ecofriendly, edible biofilms can be used in active food packaging applications.


2021 ◽  
Vol 4 (1) ◽  
pp. 43
Author(s):  
Reno Susanto ◽  
W Revika ◽  
Irdoni Irdoni

Edible film is a packaging that has the advantage of being easily degraded so that it does not cause environmental problems such as plastic waste which can pollute the environment. Edible film is considered to have good prospects for application in food ingredients, one of which is meat, because meat has a limited shelf life. The addition of antimicrobial ingredients to the edible film in the form of essential oil of basil leaves is useful for reducing microbial growth. The purpose of this study was to make edible films to extend the shelf life of frozen meat, utilize banana peels and durian seeds as the main ingredients for making edible films and use basil essential oil as an antimicrobial agent. The stages of activities carried out in this study included the preparation of raw materials for waste banana peels, durian seeds, and basil leaves. This stage includes the extraction process of each ingredient that produces pectin from banana peels, starch from durian seeds, and essential oil from basil leaves. Furthermore, the making of edible films from these raw materials varied the ratio between the mass of pectin and starch. The formed edible films were analyzed using FTIR, attractiveness test, and microbial growth testing by comparing meat coated with edible film and meat not coated with edible film. The characteristics of the edible film produced are 0.1 mm thick with a tensile strength value of 64.65 MPa - 75.34 MPa and a percent elongation value of 0.318% - 0.36%. The best edible film was produced at a ratio of 4: 1 (pectin: starch) with the addition of antimicrobials which had a film thickness of 0.1 mm with a tensile strength value of 75.34 MPa and 0.35% elongation percent.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1393
Author(s):  
Sónia Pedreiro ◽  
Artur Figueirinha ◽  
Ana Sanches Silva ◽  
Fernando Ramos

Edible films and coatings allow preserving fresh and processed food, maintaining quality, preventing microbial contamination and/or oxidation reactions and increasing the shelf life of food products. The structural matrix of edible films and coatings is mainly constituted by proteins, lipids or polysaccharides. However, it is possible to increase the bioactive potential of these polymeric matrices by adding phenolic compounds obtained from plant extracts. Phenolic compounds are known to possess several biological properties such as antioxidant and antimicrobial properties. Incorporating phenolic compounds enriched plant extracts in edible films and coatings contribute to preventing food spoilage/deterioration and the extension of shelf life. This review is focused on edible films and coatings based on gums and starch. Special attention is given to bioactive edible films and coatings incorporating plant extracts enriched in phenolic compounds.


Author(s):  
F. Salar Behrestaghi ◽  
S. Bahram ◽  
P. Ariaii

Background: Edible films and coatings are biodegradable that can preserve the quality and extend the shelf life of foods. The aim of this study was to investigate the physical and mechanical properties, and antimicrobial activity of carboxymethyl cellulose (CMC) film containing Artemisia sieberi Essential Oil (AEO). Methods: The studied parameters were the antibacterial activity and physical properties, including Water Vapor Permeability (WVP), Contact Angle (CA), solubility, Moisture Content (MC), and surface color; as well as mechanical properties including Elongation at break% (E%) and Tensile Strength (TS) of CMC incorporated with AEO at levels of 0 (control), 0.5, 1, and 1.5% v/v. Data were statistically analyzed by SPSS software. Results: Camphor (36.38%), 1,8-cineole (15.89%), β-Thujone (6.7%), and camphanone (6.2%) were the main components of AEO. The edible CMC film showed increase in WVP, contact angle, E%, darker color, and yellowness, with decreases in film solubility, MC, and TS after the incorporation of AEO. CMC film with 1.5% of AEO showed the highest a* (greenness) and b* (yellowness) values. The inhibition zones were 9.33, 11.5, and 17.30 mm for Staphylococcus aureus; and 8, 11.50, and 14.33 mm for Escherichia coli at AEO levels of 0.5, 1, and 1.5%, respectively. Conclusion: The overall results of this study showed that CMC films enriched with AEO could be beneficial in food packaging to retard food deterioration.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1364
Author(s):  
Manar Abdalrazeq ◽  
Nidal Jaradat ◽  
Mohammad Qadi ◽  
C. Valeria L. Giosafatto ◽  
Eliana Dell’Olmo ◽  
...  

The present study aimed to produce bio-active packaging materials made of whey proteins (WPs) and essential oil (EO) extracted from Thymbra (Satureja capitata, L.), one of the most popular Palestinian wild plants. In this study, two different Thymbra leaves from Nablus and Qabatiya in Palestine were collected and analyzed for EOs by gas chromatography and mass spectrometry. Based on the analysis, two EOs, namely, TEO1 and TEO2, were extracted, and it was found that both samples primarily contain γ-terpinene and carvacrol, whereas p-cymene was detected only in TEO1. The antimicrobial activity of TEO1 and TEO2 was evaluated by microbroth microdilution assays against pathogenic bacteria and yeast. Based on the results, TEO1 exhibited potent antimicrobial activity against the test strains. Besides, TEO1 was chosen to functionalize WP-based films at different concentrations (0.1%, 0.4%, and 0.8% v/v of Film Forming Solutions). Film mechanical property investigation showed a marked reduction in the tensile strength and Young’s modulus at 0.8% TEO1. In contrast, its elongation at break value was significantly (p < 0.05) increased due to the plasticizing effect of the EO. Moreover, the film transparency was found to be significantly (p < 0.05) reduced by increasing TEO1 concentrations. Finally, microbiological investigations indicated that film antimicrobial activity against both gram-positive and gram-negative bacteria increased dose-dependently. The overall results open interesting perspectives for employing these films as preservative materials in food packaging.


Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 307
Author(s):  
Smarak Bandyopadhyay ◽  
Nabanita Saha ◽  
Oyunchimeg Zandraa ◽  
Martina Pummerová ◽  
Petr Sáha

‘Gouda cheese’ is one of the most popular varieties of cheese eaten worldwide. The preservation problem of gouda arises due to microbial contamination and infestation. Therefore, essential oil (EO) based PVP-CMC-BC-GG hydrogel film was prepared to solve the problem and to extend the shelf-life of ‘Gouda cheese’. Anthocyanin (isolated from red cabbage) based pH stickers are integrated into the packaging system to recognize the spoilage of ‘cheese’. EOs (clove and/or cinnamon) are added to PVP-CMC-BC-GG hydrogel film to improve its antimicrobial, physical, mechanical, and thermal properties as well as shelf-life of cheese. The films are assessed based on their physical, structural, and functional properties, real-time assessment on cheese, and biodegradability. The results revealed that although the addition of oils to the PVP-CMC-BC-GG hydrogel films enhanced its mechanical, hydrophobic, and antimicrobial properties, the biodegradability of PVP-CMC-BC-GG films declined with the addition of EOs. The thermal properties remained the same irrespective of the addition of EOs. The shelf life of cheese was extended for more than 10–12 days, inside the PVP-CMC-BC-GG hydrogel sachet compared to the conventional PE packaging system. Hence the use of the PVP-CMC-BC-GG sachet (containing EO or without EO) is recommended for cheese packaging along with the use of PVP-CMC-BC-GG anthocyanin bio stickers for monitoring the quality of cheese.


2015 ◽  
Vol 804 ◽  
pp. 203-206
Author(s):  
Duongruitai Nicomrat ◽  
Jirasak Tharajak ◽  
Pattarica Soongsombat

Chitosan is the second most abundant polysaccharide in nature, non-toxic, biocompatible, biodegradable, and bacteriostatic and fungistatic. Many researches have devoted on the development of new biodegradable materials especially films and coatings with its polysaccharides causing film-forming properties. The heating process during plasticization has been long known for its detrimental effects on a shelf life of chitosan and possibly its antimicrobial activity. In the study, we were interested in understanding of antimicrobial activity of chitosan after mixing with various amounts of plasticizer polyethylene glycol (PEG) under various temperatures but not further be plasticized chitosan films. From fifty percentages of chitosan obtained by deacetylation of chitin which was extracted from shrimp wastes. Chitosan was mixed with plasticizer PEG, incubated at room temperature, 40, 60, 80, or 100°C for 15 min, and observed for their microbial susceptibility. The results exhibited comparable effectiveness of the antimicrobial properties in chitosan and even quite lower in chitosan blended with PEG, in exhibiting antimicrobial activity. Additionally, antibacterial activities of chitosan blended with PEG were heat dependent. These overall data will be essential information for the development of antimicrobial films and coatings in food packaging with the extending shelf life.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mojgan Alizadeh ◽  
Akram Arianfar ◽  
Ameneh Mohammadi

Objective: Ziziphora clinopodioides is an edible medicinal plant belongs to the Labiatae family that widespread all over Iran. It used as culinary and also in cold and cough treatments in Iran. The aim of present work was to evaluate the effect of different timeframes during the hydrodistillation on essential oil composition, antimicrobial and antioxidant activity. Materials and Methods: The essential oil of Z. clinopodiodes was extracted via hydrodistillation with Clevenger apparatus. The fractions of essential oil were captured at 6 times from the beginning of the distillation: (10, 20, 60, 120, 180 and 240 min). The fractions of essential oil were analyzed by GC/MS and their antibacterial, antifungal and antioxidant activities were studied by Disk - well diffusion and DPPH methods respectively. Results: Six distillation times and whole essential oil were captured during the hydrodistillation. Essential oil yield dropped off significantly during distillation progressed (1.0% for 10 min and 0.025 for 240 min). 1,8 Cineol, Isomenthone, Pulegone, Piperitenone and Citronellic acid were major compounds in fractions and they were affected by distillation times. Pulegone was major compound in all of essential oils. In antioxidant activity assay, whole essential oil was stronger than was stronger than positive control and fractions of essential oil, because of higher levels of Isomenthone, Piperitenone and Citronellic acid. Strongest antimicrobial activity against S. aureus, E. coli and C. albicans was observed from 10 min fraction. Conclusion: Our results indicated that distillation time can create essential oils with specific properties and we can achieve to more efficient essential oil in short times.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 332
Author(s):  
Jancikova Simona ◽  
Dordevic Dani ◽  
Sedlacek Petr ◽  
Nejezchlebova Marcela ◽  
Treml Jakub ◽  
...  

The research aim was to use orange essential oil and trehalose in a carrageenan matrix to form edible packaging. The edible packaging experimentally produced by casting from an aqueous solution were evaluated by the following analysis: UV-Vis spectrum, transparency value, transmittance, attenuated total reflectance Fourier-Transform spectroscopy (FTIR), scanning electron microscopy (SEM) and antimicrobial activity. The obtained results showed that the combination of orange essential oil with trehalose decreases the transmittance value in the UV and Vis regions (up to 0.14% ± 0.02% at 356 nm), meaning that produced films can act as a UV protector. Most produced films in the research were resistant to Gram-positive bacteria (Staphylococcus aureus subsp. aureus), though most films did not show antibacterial properties against Gram-negative bacteria and yeasts. FTIR and SEM confirmed that both the amount of carrageenan used and the combination with orange essential oil influenced the compatibility of trehalose with the film matrix. The research showed how different combinations of trehalose, orange essential oils and carrageenan can affect edible film properties. These changes represent important information for further research and the possible practical application of these edible matrices.


Sign in / Sign up

Export Citation Format

Share Document