scholarly journals Soil Compaction Curve of an Oxisol Under Sugarcane Planted After In-row Deep Tillage

2015 ◽  
Vol 39 (5) ◽  
pp. 1490-1497 ◽  
Author(s):  
Indiamara Marasca ◽  
Stella Vannucci Lemos ◽  
Reginaldo Barbosa Silva ◽  
Saulo Philipe Sebastião Guerra ◽  
Kleber Pereira Lanças

ABSTRACT Soil tillage that maintains the productivity of sugarcane plantations, providing an area for the root development and without traffic on crop rows, has given rise to new technologies in rural areas. The purpose of this study was to evaluate the soil physical properties in two sugarcane plantations, one of which was prepared with deep tilling and the other with conventional tillage. The experiment was conducted in Lençóis Paulista, São Paulo State. Soil penetration resistance and relative density were analyzed. The cone index was lower in deep-tilled soil without traffic in all layers, than in deep-tilled soil with traffic and in conventional tillage. In both tillage treatments, the relative density values were acceptable in the 0.00-0.15 m soil layer, but considered detrimental for sugarcane development in the 0.15-0.30 and 0.30-0.45 m layers.

2013 ◽  
pp. 183-186
Author(s):  
Géza Tuba

he effect of reduced and conventional tillage systems on soil compaction and moisture content in two years with extreme weather conditions is introduced in this paper. The investigations were carried out in a long-term soil cultivation experiment set on a heavy textured meadow chernozem soil at the Karcag Research Institute. In 2010 the amount of precipitation during the vegetation period of winter wheat was 623.3 mm, 2.2 times higher than the 50-year average, while in 2011 this value was 188.7 mm giving only 65% of the average. The examinations were made after harvest on stubbles on 4 test plots in 5 replications in the case of each tillage system. Soil compaction was characterised by penetration resistance values, while the actual soil moisture contents were determined by gravimetry. The values of penetration resistance and soil moisture content of the cultivated soil layer were better in the case of reduced tillage under extreme precipitation conditions. It could be established that regular application of deep soil loosening is essential due to the formation of the unfavourable compact soil layer under 30 cm. Conventional tillage resulted in enhanced compaction under the depth of ploughing, the penetration resistance can reach the value of 4 MPa under wet, while even 8 MPa under dry soil status.


2005 ◽  
Vol 53 (1) ◽  
pp. 53-57 ◽  
Author(s):  
T. Rátonyi ◽  
L. Huzsvai ◽  
J. Nagy ◽  
A. Megyes

The cultivation technologies for the dominant crops in Hungary need to be improved both in the interests of environmental protection and to reduce cultivation costs. A long-term research project was initiated in order to determine the feasibility of conservation tillage systems. The aim of the experiments was to evaluate conservation farming systems in Hungary in order to achieve more economical and more environment-friendly agricultural land use. Four tillage systems, namely conventional tillage (mouldboard plough), conservation tillage I (primary tillage with a J.D. Disk Ripper), conservation tillage II (primary tillage with a J.D. Mulch Finisher) and no tillage (direct drilling), were compared on a clay loam meadow soil (Vertisol). The physical condition of the experimental soils was evaluated using a hand-operated static cone penetrometer. Parallel with the measurement of penetration resistance, the moisture content of the soil was also determined. The grain yield of maize hybrids (Kincs SC [1999], Occitán SC [2000], Pr 37M34 SC [2001], DeKalb 471 SC [2002]) was measured using a plot combine-harvester. The analysis of soil conditions confirmed that if the cultivation depth and intensity are reduced the compaction of soil layers close to the surface can be expected. The decrease in yields (8-33%) in direct drilling (NT) and shallow, spring cultivated (MF) treatments, despite the higher available water content, can be explained partly by the compacted status of the 15-25 cm soil layer.


2014 ◽  
pp. 109-113
Author(s):  
Lilla Szűcs ◽  
Géza Tuba ◽  
József Zsembeli

The effect of PRP-SOL soil conditional on soil compaction, moisture content and bulk density is studied in a long-term soil cultivation experiment from 1997 on a heavy textured meadow chernozem soil, in reduced and conventional tillage at Karcag Research Institute. Our investigations were made in the vegetation period of corn, in June and after harvesting, on stubble. Soil compaction was measured with a penetrometer, the actual moisture content was determined by gravimetric method. The bulk density values of the regularly cultivated soil layer of 0–10 and 10–20 cm depths were defined from undisturbed soil samples. We established that after 3 years the application of the soil conditioner has positive effect on soil compaction and moisture status of the top layer in the reduced tillage system. We could not figure out this positive effect in the case of conventional tillage.


2021 ◽  
pp. 269-278
Author(s):  
Nikolay Aldoshin ◽  
Farmon Mamatov ◽  
Yury Kuznetsov ◽  
Igor Kravchenko ◽  
Aleksey Kupreenko ◽  
...  

The analysis of soil cultivation technologies for sowing melon crops was carried out. The design of a combined soil tillage tool capable of plowing, pre-sowing treatment and formation of irrigation furrows in one pass was substantiated. The main tillage is recommended to be done by front plow tools for smooth plowing. Plow bodies of two bottom plows should be mounted along the symmetry axis of the implement according to the lister scheme, which allows not to carry out a full rotation of soil layers and provides automatic formation of irrigation furrow. A loosening and leveling device for strip pre-sowing soil tillage in the sowing zone has been developed. The use of a combined soil tillage tool can reduce labor costs up to 25%, energy consumption for soil preparation up to 50%, reduce the duration of work, reduce soil compaction and retain moisture in the soil layer.


Land ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 482
Author(s):  
Michael Kuhwald ◽  
Wolfgang B. Hamer ◽  
Joachim Brunotte ◽  
Rainer Duttmann

Conservation agriculture may lead to increased penetration resistance due to soil compaction. To loosen the topsoil and lower the compaction, one-time inversion tillage (OTIT) is a measure frequently used in conservation agriculture. However, the duration of the positive effects of this measure on penetration resistance is sparsely known. Therefore, the aim of this study was to analyze the spatio-temporal behavior of penetration resistance after OTIT as an indicator for soil compaction. A field subdivided into three differently tilled plots (conventional tillage with moldboard plough to 30 cm depth (CT), reduced tillage with chisel plough to 25 cm depth (RT1) and reduced tillage with disk harrow to 10 cm depth (RT2)) served as study area. In 2014, the entire field was tilled by moldboard plough and penetration resistance was recorded in the following 5 years. The results showed that OTIT reduced the penetration resistance in both RT-plots and led to an approximation in all three plots. However, after 18 (RT2) and 30 months (RT1), the differences in penetration resistance were higher (p < 0.01) in both RT-plots compared to CT. Consequently, OTIT can effectively remove the compacted layer developed in conservation agriculture. However, the lasting effect seems to be relatively short.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 541 ◽  
Author(s):  
Ido Negev ◽  
Tamir Shechter ◽  
Lilach Shtrasler ◽  
Hadar Rozenbach ◽  
Avri Livne

The Dan Region Reclamation Project (Shafdan) reclaims ~125 millions of cubic meters per year (Mm3/year) of treated wastewater from the Tel Aviv Metropolitan area. Following secondary treatment, the effluent is recharged into a sandy aquifer for soil aquifer treatment (SAT). Over the past three years, a decrease in recharge capacity was noticed. Several operational causes were considered including reservations regarding the tillage procedure of recharge ponds. Tillage of the recharge ponds facilitates aeration, breaking surface crusts and the removal of vegetation. The procedure includes deep (40–60 cm) plowing and shallow (10–20 cm) sweep-knives (SK) cultivator or discus. In this research, the existing tillage equipment was compared to a new equipment, which includes a deep subsoiler and a chisel-knives (CK) cultivator. The effects of each tool on the infiltration rate (IR), recharge capacity, and soil compaction were examined. The results suggest a significant improvement in the recharge capacity, up to 95% and 15% on average following subsoiler and CK cultivator treatments, respectively, with respect to the existing plowing treatment. In addition, the depth of the compacted soil layer increased from ~30 to ~55 cm after subsoiler treatment. It seems that this shallow layer, developed under an improper tillage regime, played a major role in the reduction of the recharge capacity. Essential understanding of other operational factors such as drying periods, preparation of the field, and soil micro-topography was also achieved.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 327-333 ◽  
Author(s):  
N. Tangyuan ◽  
H. Bin ◽  
J. Nianyuan ◽  
T. Shenzhong ◽  
L. Zengjia

A study was conducted on the effect of two single practices, including soil tillage and returning straw to soil, and their interaction on soil porosity of maize-wheat cropping system. Field experiments involved four tillage practices, including conventional tillage (C), zero-tillage (Z), harrow-tillage (H) and subsoil-tillage (S), with straw absent (A) or straw present (P). Total porosity, capillary porosity and non-capillary porosity of soil were investigated. The results showed that the soil total porosity of 0–10 soil layer was mostly affected; conventional tillage can increase the capillary porosity of soil, but the non-capillary porosity of S was the highest. Returning of straw can increase the porosity of soil. Through the analysis of affecting force, it can be concluded that interaction of soil tillage and straw is the most important factor to soil porosity, while the controlling factor to non-capillary porosity was soil tillage treatment.


2015 ◽  
Vol 39 (3) ◽  
pp. 763-766
Author(s):  
Carolina Fernandes ◽  
Roniram Pereira da Silva ◽  
Adolfo Valente Marcelo

Soil quality indicators such as penetration resistance (PR) and bulk density (BD) are traditionally determined in a single undisturbed soil sample. The aim of this study was to assess the effect of PR measurements of undisturbed samples on the determination of BD in the same sample of two soils differing in clay contents. To this end, samples were collected from the 0.00-0.10 and 0.10-0.20 m layers of two soils of clayey and very clayey texture. Volumetric rings were used to collect a total of 120 undisturbed soil samples from each soil layer that were divided into two subsets containing 60 units each. One sample set, designated “perforated samples”, was used to determine PR and BD in the same undisturbed sample; the other, named “intact samples”, was used to determine BD only. Bulk density values for perforated and intact samples were compared by analysis of variance, using a completely randomized experimental design. Means were compared by the t-test at 5 %. The BD values for the clayey soil were similar in perforated and intact samples from the two layers. However, BD of the very clayey soil was lower in the perforated than in the intact samples at both depths. Therefore, PR and BD in clayey soils can be accurately determined in the same undisturbed sample whereas in very clayey soils, different samples are required for this purpose.


2012 ◽  
Vol 36 (6) ◽  
pp. 1704-1713 ◽  
Author(s):  
Moacir Tuzzin de Moraes ◽  
Henrique Debiasi ◽  
Julio Cezar Franchini ◽  
Vanderlei Rodrigues da Silva

The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.


Author(s):  
Rakesh Kumar Gulati ◽  
Manveen Kaur

Information and Communications Technologies (ICTs) adoption is increasing globally for human development because of its potential affect in many aspects of economic and societal activities such as GDP growth, employment, productivity, poverty alleviation, quality of life, education, clean water and sanitation, clean energy, and healthcare. Adoption of new technologies has been the main challenge in rural areas and is the main reason for the growing gap between rural and urban economy. The work related ICT use have also yielded mixed results; some studies show the individual’s perceived work-family conflict, negative cognitive responses e.g. techno stress while others show increased productivity, improved job satisfaction and work-family balance due to flexible work timings. This paper attempts to understand the role of ICT in human development areas of health, education and citizen empowerment taking into consideration of digital divide which exists in geographic area and within the communities through literature review.


Sign in / Sign up

Export Citation Format

Share Document