scholarly journals Characterization and biological properties of sulfated polysaccharides of Corallina officinalis and Pterocladia capillacea

Author(s):  
Mona Mohamed Ismail ◽  
Mohamed Saleh Amer
1987 ◽  
Author(s):  
B Casu ◽  
L Marchese ◽  
A Naggi ◽  
G Torri ◽  
J Fareed ◽  
...  

In order to investigate the influence of charge distribution and chain length on the biological properties of sulfated polysaccharides, additional sulfate groups were introduced into the galactosaminoglycans, chondriotin sulfate and dermatan sulfate. Using a flexible method (with sulfuric acid and chlorosulfonic acid) for concurrent sulfation and controlled depolymerization, numerous products were obtained and characterized by chemical, enzymatic and nuclear magnetic resonance spectroscopic methods. The biologic actions of these products were profiled in both in vitro and in vivo assays for antithrombotic activity. Despite a weaker in vitro anticoagulant activity, low molecular weight over sulfated galactosaminoglycans produced significant dose-dependent antithrombotic actions in animal models which were similar to the actions observed with oversulfated low molecular weight heparins. These results suggest that a significant antithrombotic activity can be elicited through non-specific interactions of polysulfates with cellular and plasma components, and that clusters of sulfate groups such as the 4-6 disulfate group on D-galactosaminoglycan residues may be important for these interactions. Furthermore, these results, also suggest that supersulfation of glycosaminogly-cans results in products with biologic activity distinct from the native material.


2008 ◽  
Vol 3 (10) ◽  
pp. 1934578X0800301 ◽  
Author(s):  
Maria I. Bilan ◽  
Anatolii I. Usov

Sulfated polysaccharides of brown algae (“fucoidans”) constitute a wide variety of biopolymers from simple sulfated fucans up to complex heteropolysaccharides composed of several neutral monosaccharides, uronic acid and sulfate. The increased interest in this class of polysaccharides is explained by their high and versatile biological activities, and hence, by their possible use in new drug design. Structural analysis of several fucoidans demonstrates that their biological properties are determined not only by charge density, but also by fine chemical structure, although distinct correlations between structure and biological activity cannot be formulated at present. The aim of this review is to describe the methods of structural analysis currently used in fucoidan chemistry, and to discuss some new information on the structures of fucoidans presented in recent publications.


Planta Medica ◽  
1999 ◽  
Vol 65 (6) ◽  
pp. 527-531 ◽  
Author(s):  
Bertrand Kaeffer ◽  
Claudine Bénard ◽  
Marc Lahaye ◽  
Hervé M. Blottière ◽  
Christine Cherbut

2018 ◽  
Vol 31 (4) ◽  
pp. 163-169
Author(s):  
Katayoon Karimzadeh

Abstract Large amounts of valuable waste are produced during sea food processing. This has a great potential for conversion to biologically active proteins and polysaccharides. Among these compounds, sulfated polysaccharides have been considered due to their many biological properties. The present work was conducted to study anticoagulant activities and angiotensin-I converting enzyme (ACE) inhibitory effects of glycosaminoglycans (GAGs) extracted from the cartilage of sturgeon (Acipenser persicus). The enzymatic extraction of sturgeon cartilage was performed in the presence of cetylpyridinium chloride salt. The structure was characterized via electron microscope and Fourier transform infrared spectroscopy (FTIR) analysis. Herein, ACE inhibitory and anticoagulant properties of extracted GAGs were determined. The amount of GAGs was 6.8±1.3% of cartilage dry weight. GAGs showed good activity in ACE inhibitory – with a highest level of 85.7%. The derived anticoagulant activity indexes, APPT (activated partial thromboplastin time) and TT (Thrombin time) of the extracted polysaccharide showed a prolonging of clotting time, compare to control. The results of this study revealed that the cartilage extracted GAGs possess promising ACE inhibitory properties and anticoagulant effects. Thus, the product can be substituted for blood reducing drugs and antithrombotic agents at least in laboratory conditions.


2016 ◽  
pp. 85-117
Author(s):  
Jantana Praiboon ◽  
Anong Chirapart ◽  
Nattanun Soisarp

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 442
Author(s):  
Bilal Muhammad Khan ◽  
Li-Xin Zheng ◽  
Wajid Khan ◽  
Aftab Ali Shah ◽  
Yang Liu ◽  
...  

Marine rhodophyte polysaccharides have a wide range of described biological properties with nontoxic characteristics, and show great potential in prebiotics and the functional foods industries. However, there is a virtual lack of Gracilaria blodgettii polysaccharides (GBP) profiling and their bioactivities. This study was designed while keeping in view the lack of physical and chemical characterization of GBP. This polysaccharide was also not previously tested for any bioactivities. A linear random coil conformation was observed for GBP, which was found to be a polysaccharide. A significant sulfate (w/w, 9.16%) and 3,6-anhydrogalactose (AHG, w/w, 17.97%) content was found in GBP. The significant difference in its setting (27.33 °C) and melting (64.33 °C) points makes it resistant to increasing heat. This, in turn, points to its utility in industrial scale processing and in enhancing the shelf-life of products under high temperatures. A radical scavenging activity of 19.80%, 25.42% and 8.80% was noted for GBP (3 mg/mL) in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (ABTS) and hydroxyl radical (HO) scavenging assays, respectively. Therefore, the findings suggest that Gracilaria blodgettii polysaccharides display a good antioxidant potential and may have potential applications in the functional food industry.


Author(s):  
Boris Andryukov ◽  
Natalya Besednova ◽  
Tatyana Kuznetsova ◽  
Tatyana Zaporozhets ◽  
Svetlana Ermakova ◽  
...  

Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on multifactorial processes. Wound treatment is a major healthcare issue that can be resolved by development of effective and affordable wound dressings based on natural materials and biologically active substances. Proper use of modern wound dressings can significantly accelerate wound healing with minimal cosmetic defects. The innovative biotechnologies for creating modern natural interactive dressings are based on sulfated polysaccharides from seaweeds with their unique structures and biological properties, the availability of their sources in the form of wild bushes, and in the form of aquaculture, as well as with a high potential for participation in process control wound healing. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The aim of this review is to summarize available information about the modern wound dressing’s technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with the emphasis on promising and innovative designs. The further prospect of using marine biopolymers is related to the need to analyze the results of numerous in vitro and in vivo experiments, summarize clinical trial data, develop a scientifically based approach and relevant practical recommendations for the treatment of wounds.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 301 ◽  
Author(s):  
Boris G. Andryukov ◽  
Natalya N. Besednova ◽  
Tatyana A. Kuznetsova ◽  
Tatyana S. Zaporozhets ◽  
Svetlana P. Ermakova ◽  
...  

Wound healing involves a complex cascade of cellular, molecular, and biochemical responses and signaling processes. It consists of successive interrelated phases, the duration of which depends on a multitude of factors. Wound treatment is a major healthcare issue that can be resolved by the development of effective and affordable wound dressings based on natural materials and biologically active substances. The proper use of modern wound dressings can significantly accelerate wound healing with minimum scar mark. Sulfated polysaccharides from seaweeds, with their unique structures and biological properties, as well as with a high potential to be used in various wound treatment methods, now undoubtedly play a major role in innovative biotechnologies of modern natural interactive dressings. These natural biopolymers are a novel and promising biologically active source for designing wound dressings based on alginates, fucoidans, carrageenans, and ulvans, which serve as active and effective therapeutic tools. The goal of this review is to summarize available information about the modern wound dressing technologies based on seaweed-derived polysaccharides, including those successfully implemented in commercial products, with a focus on promising and innovative designs. Future perspectives for the use of marine-derived biopolymers necessitate summarizing and analyzing results of numerous experiments and clinical trial data, developing a scientifically substantiated approach to wound treatment, and suggesting relevant practical recommendations.


Author(s):  
Regina Birchem

Spheroids of the green colonial alga Volvox consist of biflagellate Chlamydomonad-like cells embedded in a transparent sheath. The sheath, important as a substance through which metabolic materials, light, and the sexual inducer must pass to and from the cells, has been shown to have an ordered structure (1,2). It is composed of both protein and carbohydrate (3); studies of V. rousseletii indicate an outside layer of sulfated polysaccharides (4).Ultrastructural studies of the sheath material in developmental stages of V. carteri f. weismannia were undertaken employing variations in the standard fixation procedure, ruthenium red, diaminobenzidine, and high voltage electron microscopy. Sheath formation begins after the completion of cell division and inversion of the daughter spheroids. Golgi, rough ER, and plasma membrane are actively involved in phases of sheath synthesis (Fig. 1). Six layers of ultrastructurally differentiated sheath material have been identified.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Sign in / Sign up

Export Citation Format

Share Document