scholarly journals Thermal Comfort Level Assessment in Urban Area of Petrolina-PE County, Brazil

2017 ◽  
Vol 32 (4) ◽  
pp. 555-563 ◽  
Author(s):  
Pedro Vieira de Azevedo ◽  
Péricles Tadeu da Costa Bezerra ◽  
Mario de Miranda Vilas Boas Ramos Leitão ◽  
Carlos Antonio Costa dos Santos

Abstract This study evaluated the thermal conditions of urban areas in Petrolina-PE, from continuous data collected in urban and rural areas for the year of 2012. The results characterized urban heat islands (UHI) with varying intensity in urban areas, especially UHI = 5.3 °C (high intensity) occurred on April 28, 2012. It was evident that the constituent elements of urban areas contribute to the formation and expansion of UHI bringing thermal discomfort for its inhabitants. An adaptation to Thom’s equation for calculating the Thermal Discomfort Index (DIT), was used to obtain the maximum (DITx) and minimum (DITm) thermal discomfort. In the urban area, the DITm indicated thermal comfort in 23.0% of the days and partial comfort in 77.0% of days surveyed. Already, the DITx characterized 71.6% of days with partial comfort and 28.4% of days with thermal discomfort. In the rural area, The DITm indicated that 41.5% of days were thermally comfortable and 58.5% of days had partial comfort. However, the DITx pointed 87.7% of the days of this environment with partial thermal comfort and 12.3% of thermally uncomfortable days. Finally, the results showed that afforestation of urban area constitutes to an effective and efficient way to mitigate thermal discomfort.

2015 ◽  
Vol 30 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Pedro Vieira de Azevedo ◽  
Péricles Tadeu da Costa Bezerra ◽  
Mário de Miranda Vilas Boas Ramos Leitão ◽  
Carlos Antonio Costa dos Santos

ABSTRACT Experimental studies were conducted aiming to characterize the thermal conditions in urban areas of the Brazilian semiarid for identifying the level of human thermal comfort in urban areas of the municipalities of Mossoró-RN, Serra Talhada-PE, Petrolina-PE and Juazeiro-BA. The results showed that the constituent elements of urban areas contribute to human thermal discomfort index (DIT). Both the wet and dry seasons showed up an uncomfortable condition in Mossoró on May 15th and on 23rd, 2008 (rural area) and on May 25rd, 2008 (urban area). By applying Thom's equation for obtaining the DIT, it was observed that the urban areas reported thermal comfort conditions always inferior to those observed in the rural areas. The results indicate conditions of partial comfort for the all areas surveyed. However, the incidence of human thermal discomfort related to the minimum, average and maximum air temperatures are, probably associated to the formation of urban heat islands. In addition, the afforestation is an effective mechanism of mitigating the adverse effects of these structures with better quality of life to the population. Therefore, it can be stated that the Brazilian semiarid region has specific urban climate, which is influenced by the design characteristics of the urban structure and buildings.


2019 ◽  
Vol 5 (4) ◽  
pp. eaau4299 ◽  
Author(s):  
Dan Li ◽  
Weilin Liao ◽  
Angela J. Rigden ◽  
Xiaoping Liu ◽  
Dagang Wang ◽  
...  

More than half of the world’s population now live in cities, which are known to be heat islands. While daytime urban heat islands (UHIs) are traditionally thought to be the consequence of less evaporative cooling in cities, recent work sparks new debate, showing that geographic variations of daytime UHI intensity were largely explained by variations in the efficiency with which urban and rural areas convect heat from the land surface to the lower atmosphere. Here, we reconcile this debate by demonstrating that the difference between the recent finding and the traditional paradigm can be explained by the difference in the attribution methods. Using a new attribution method, we find that spatial variations of daytime UHI intensity are more controlled by variations in the capacity of urban and rural areas to evaporate water, suggesting that strategies enhancing the evaporation capability such as green infrastructure are effective ways to mitigate urban heat.


2019 ◽  
Vol 18 (3) ◽  
pp. 628-635
Author(s):  
Adeleke NA ◽  
Adebimpe WO ◽  
Farinloye EO ◽  
Olowookere AS

Background: Sexual assault is about the most dehumanizing form of gender based violence against women worldwide. Nigeria and many other countries in Africa do not have National data on women sexual assault. This survey is aimed at generating data on sexual assault against women in Osun state, Nigeria. Objective: To determine the patterns of sexual assault against women in Urban and Rural areas of Osun State in South western Nigeria. Methodology: A cross section survey using interviewer administered questionnaire was carried out among selected 1,200 women aged 15 years and above in urban and rural areas, between August and December 2014. The questionnaire was patterned after WHO Multi-country study on women’s health and domestic violence data instrument. The data were analyzed using SPSS version 17.0. Results: Mean age of the respondents was 23.75 ±(13.22) years in rural area, in the urban area it was 27.69 ±(10.23) years. 46 % and 54 % were married in urban and rural areas respectively. The prevalence of completed rape was 10.0 % in urban and 9.2 % in rural, while that of attempted rape was 31.4 % and 20.0 % in the urban and rural area respectively. Women in the rural areas experienced repeat sexual assault and suffered non-genital injuries more the in urban area. Having partner and living in urban area were associated with female sexual assault. Conclusions: Sexual assault against women constitutes public health issue in Osun state with rural women incurring greater negative health consequences. Primary prevention strategies should focus at young men and women in both rural and urban areas of the state. Bangladesh Journal of Medical Science Vol.18(3) 2019 p.628-635


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Anand ◽  
A. Gupta ◽  
A. Maini ◽  
Avi Gupta ◽  
A. Sharma ◽  
...  

The roof and walls in the urban areas contribute to major share in the absorption of solar radiations and also retard the outflow of the absorbed radiation from the building envelope, thereby increasing the global warming by inducing the heat island effect. The impact of using cool roof technologies on the thermal comfort of the office buildings has been estimated. Cool roofs reduce electricity consumption for maintaining the temperature of the air-conditioned buildings in the comfort level and also increase comfort in buildings merely not relying completely on cooling equipment. The cool roofs and cool pavements, however, can mitigate summer urban heat islands by improving indoor air quality and comfort. The thermal analysis of different materials has been carried out to analyze the impact of the rate of heat transfer on the building envelope and the results obtained indicate that different cool roof techniques are beneficial in maintaining the comfort level of the building which purely depends on the ambient temperature conditions.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 509A-509
Author(s):  
Derald A. Harp ◽  
Edward L. McWilliams

Urban areas have average annual temperatures 2–3°C warmer than surrounding rural areas, with daily differences of 5–6°C common. A suggested reason for this temperature difference is the extensive use of concrete, asphalt, and other building materials in the urban environment. Vegetation can moderate these temperatures by intercepting incoming radiation. The influence of vegetation patterns on the magnitude of urban and micro-urban “heat islands” (UHI and MUHI, respectively) is compared for several cities including Houston, Austin, College Station, and Ft. Worth, Texas; Huntsville, Ala.; and Gainesville, Fla. Temperatures for all cities studied were greatest in the built-up areas and dropped off in suburban areas and adjacent rural areas. In Houston, surrounding rice fields were 3–5°C cooler than urban areas. Heavily built-up areas of Austin were 2–4°C warmer than parks and fields outside of the city. In all of the cities, large parks were typically 2–3°C cooler than adjacent built-up areas. Large shopping malls varied in nocturnal winter and summer temperature, with winter temperatures near door openings 2–3°C warmer, and summer daytime temperatures as much as 17°C cooler beneath trees. This effect seemed to persist at the microclimatic scale. Areas beneath evergreen trees and shrubs were warmer in the winter than surrounding grass covered areas. Video thermography indicated that the lower surfaces of limbs in deciduous trees were warmer than the upper surfaces. Overall, vegetation played a significant role, both at the local and microscale, in temperature moderation.


2021 ◽  
Author(s):  
Sebastian Schlögl ◽  
Nico Bader ◽  
Julien Gérard Anet ◽  
Martin Frey ◽  
Curdin Spirig ◽  
...  

<p>Today, more than half of the world’s population lives in urban areas and the proportion is projected to increase further in the near future. The increased number of heatwaves worldwide caused by the anthropogenic climate change may lead to heat stress and significant economic and ecological damages. Therefore, the growth of urban areas in combination with climate change can increase future mortality rates in cities, given that cities are more vulnerable to heatwaves due to the greater heat storage capacity of artificial surfaces towards higher longwave radiation fluxes.</p><p>To detect urban heat islands and resolve the micro-scale air temperature field in an urban environment, a low-cost air temperature network, including 450 sensors, was installed in the Swiss cities of Zurich and Basel in 2019 and 2020. These air temperature data, complemented with further official measurement stations, force a statistical air temperature downscaling model for urban environments, which is used operationally to calculate hourly micro-scale air temperatures in 10 m horizontal resolution. In addition to air temperature measurements from the low-cost sensor network, the model is further forced by albedo, NDVI, and NDBI values generated from the polar-orbiting satellite Sentinel-2, land surface temperatures estimated from Landsat-8, and high-resolution digital surface and elevation models.</p><p>Urban heat islands (UHI) are processed averaging hourly air temperatures over an entire year for each grid point, and comparing this average to the overall average in rural areas. UHI effects can then be correlated to high-resolution local climate zone maps and other local factors.</p><p>Between 60-80 % of the urban area is modeled with an accuracy below 1 K for an hourly time step indicating that the approach may work well in different cities. However, the outcome may depend on the complexity of the cities. The model error decreases rapidly by increasing the number of spatially distributed sensor data used to train the model, from 0 to 70 sensors, and then plateaus with further increases. An accuracy below 1 K can be expected for more than 50 air temperature measurements within the investigated cities and the surrounding rural areas. </p><p>A strong statistical air temperature model coupled with atmospheric boundary layer models (e.g. PALM-4U, MUKLIMO, FITNAH) will aid to generate highly resolved urban heat island prediction maps that help decision-makers to identify local heat islands easier. This will ensure that financial resources will be invested as efficiently as possible in mitigation actions.</p>


2013 ◽  
Vol 52 (9) ◽  
pp. 2051-2064 ◽  
Author(s):  
Dan Li ◽  
Elie Bou-Zeid

AbstractCities are well known to be hotter than the rural areas that surround them; this phenomenon is called the urban heat island. Heat waves are excessively hot periods during which the air temperatures of both urban and rural areas increase significantly. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses indicates synergies between urban heat islands and heat waves. That is, not only do heat waves increase the ambient temperatures, but they also intensify the difference between urban and rural temperatures. As a result, the added heat stress in cities will be even higher than the sum of the background urban heat island effect and the heat wave effect. Results presented here also attribute this added impact of heat waves on urban areas to the lack of surface moisture in urban areas and the low wind speed associated with heat waves. Given that heat waves are projected to become more frequent and that urban populations are substantially increasing, these findings underline the serious heat-related health risks facing urban residents in the twenty-first century. Adaptation and mitigation strategies will require joint efforts to reinvent the city, allowing for more green spaces and lesser disruption of the natural water cycle.


1994 ◽  
Vol 5 (4) ◽  
pp. 177-185 ◽  
Author(s):  
Anne Laine ◽  
Juhani Itämies ◽  
Markku Orell ◽  
Sisko Kvist

The composition of the invertebrate fauna living on young Norway spruce (Picea abies) branches was studied in northern Finland both in urban and rural areas during the summer months of 1988. Attention was given to the total nitrogen, sulphur and phenolics concentration of the needles. The material consisted of 52627 invertebrates from 300 separate spruce saplings. Mites formed the majority of the invertebrates. Most numerous were Ameronothrus dubinini, Diapterobates humeralis and Ceratoppia bipilis. Springtails and spiders were also numerous. The invertebrate abundances were highest in the urban areas of Isko and Linnanmaa, where the sulphur and nitrogen concentration of the needles was high and the phenolics/nitrogen ratio low. The lowest invertebrate abundances were found in Rusko, the most urban area, and Taivalkoski, the most rural area. Nitrogen and sulphur concentrations were highest at Rusko and lowest at Taivalkoski. Possible reasons for the results are discussed.


Author(s):  
Yuri Matheus Neves Silva ◽  
Helder Martins Silva ◽  
Raiany Dias De Andrade Silva ◽  
Eduardo Duarte Marques ◽  
Olga Venimar De Oliveira Gomes

The phenomenon of urban heat islands (UHI) is caused by the increase in temperatures of an urban area as a result of the development of human activities within that area, this phenomenon is usually studied in medium and large cities. This study aims to verify if the phenomenon of UHI occurs in the municipality of Três Rios – RJ, a small sized city. This study included the use of mobile transect, through pre-established data collection points/stations. Five data collection points were selected, from which one was included in a rural area, one in the Parque Natural Municipal (Urban Park, within the city), and three points within the urbanized area. The equipment used was the Brunton® / ADC PRO handheld weather station. The data collection period ranged from September 2018 until July 2019, which included the four seasons. Measurements were taken at 6:00, 12:00, 15:00, 18:00, and 21:00h, in alternate days during the study period. Considering the temperature measurements, two different indicators of thermal variability were used. Strong magnitude heat islands were detected, taking into consideration the relevant variation of maximum temperatures observed in the urban area when compared to the rural area. The results indicate the most affected populations to be the ones located within urban areas, mostly individuals under socioeconomic vulnerability. The results obtained can be used as support for the development of strategies to minimize the thermal discomfort to populations exposed to the influence of higher magnitude urban heat islands.


2020 ◽  
Author(s):  
Sarah Safieddine ◽  
Maya George ◽  
Cathy Clerbaux ◽  
Ana Paracho ◽  
Anne Boynard ◽  
...  

<p>IASI is a versatile mission, allowing the measurement of both meteorological parameters such as temperature and atmospheric composition for infrared absorbing species. With its long observation record and frequent overpasses, IASI is able to follow changes at different spatial scales. We studied IASI’s capability to track the anthropogenic signature associated with large cities, both in terms of temperature fingerprint (urban heat islands) and carbon monoxide (CO) content, a good tracer of human activity (transport, heating, and industrial activities). For this study we averaged the IASI data available since the launch of the first IASI, in order to increase the signal to noise, and allow discriminating the city from its surroundings. For skin temperatures we show that some cities experience much warmer temperatures than nearby rural areas, with day and night differences, whereas other urban areas appear as cold urban islands when surrounded by deserts Examples will be shown and compare with MODIS observations. For CO emitted by human activities, we identified some cities that stand out from their background, and were able to compare their CO associated signatures with measurements provided by other available spaceborne instruments such as Mopitt and TROPOMI.</p>


Sign in / Sign up

Export Citation Format

Share Document