scholarly journals Changes in chemical composition of cover crops residue during decomposition

2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Douglas Adams Weiler ◽  
Leonardo Mendes Bastos ◽  
Janquieli Schirmann ◽  
Celso Aita ◽  
Sandro José Giacomini

ABSTRACT: Crop residues decomposition are controlled by chemical tissue components. This study evaluated changes on plant tissue components, separated by the Van Soest partitioning method, during cover crop decomposition. The Van Soest soluble fraction was the first to be released from the crop residues, followed by cellulose and hemicellulose. Lignin was the crop residue component that suffered the least degradation, and for certain crop residue types, lignin degradation was not detected. The degradation of the main components of crop residues (soluble fraction, cellulose, hemicellulose and lignin) is determined by the chemical and structural composition of each fraction.

2018 ◽  
Vol 34 (6) ◽  
pp. 492-500 ◽  
Author(s):  
Alireza Safahani Langeroodi ◽  
Emanuele Radicetti ◽  
Enio Campiglia

AbstractIn the conventional cropping systems, increased costs and resource pollution are attributed to the intensive use of chemical inputs. The adoption of cover crops could be a part of a suitable strategy for improving the sustainability of the agro-ecosystems due to their ability to affect nutrient and weed management. A 2-yr field experiments were conducted in Gorgan, North of Iran, with the aim of assessing the effect of cover crop residue management and herbicide rates on weed management and the yield of tomato crop. The treatments consisted in: (a) three winter soil management: two cover crops [annual medic (Medicago scutellata L.) and barley (Hordeum vulgare L.)] and no covered soil; (b) two soil tillage (no-tillage, where cover crop residues were left in strips on the soil surface, and conventional tillage, where cover crop residues were green manured at 30 cm of soil depth); and (c) three pre-emergence herbicide rates (no-herbicide application, half rate recommended or full rate recommended ). Cover crops were sown in early September and mechanically suppressed in March about 2 weeks before tomato transplanting. At cover crop suppression, annual medic showed the highest aboveground biomass [569 g m−2 of dry matter (DM)], while barley showed the lowest weed content (32 g m−2 of DM). At tomato harvesting, weed density and aboveground biomass ranged from 6.9 to 61.5 plants m−2 and from 33.6 and 1157.0 g m−2 of DM, respectively. Cover crop residues placed on soil surface suppressed weeds more effectively than incorporated residues, especially in barley, mainly due to the physical barrier of residues which reduced the stimulation of weed germination and establishment. As expected, herbicide rate decreased both weed density and biomass, even if the adoption of annual medic and barley cover crops before the tomato cultivation could allow a possible reduction of herbicide rate while maintaining similar fruit yield. Tomato yield was higher in annual medic than barley and no cover regardless of tillage management (on average 62.3, 51.8 and 50.1 t ha−1 of fresh matter, respectively) probably due to an abundant availability of soil nitrogen throughout the tomato cultivation. This was confirmed by high and constant values of tomato N status grown in annual medic and evaluated using SPAD chlorophyll meter. Although further research of cover crop residue management is required to obtain a better understanding on herbicide rate reduction, these preliminary results could be extended to other vegetable crops which have similar requirements of tomato.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1041 ◽  
Author(s):  
Antonio Rodríguez-Lizana ◽  
Miguel Ángel Repullo-Ruibérriz de Torres ◽  
Rosa Carbonell-Bojollo ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández

Cover crops (CC)s are increasingly employed by farmers in olive groves. Spontaneous soil cover is the most commonly used CC. Its continuous utilization changes ruderal flora. It is necessary to study new CCs. Living CCs provide C and nutrients to soil during decomposition. Information on this issue in olive groves is scarce. A 4-year field study involving grab sampling of Brachypodium distachyon, Sinapis alba and spontaneous CC residues was conducted to study C and nutrient release from cover crop residues. Throughout the decomposition cycles, C, N and P release accounted for 40 to 58% of the C, N and P amounts in the residues after mowing. Most K was released (80–90%). Expressed in kg per hectare, the release of C and N in Brachypodium (C: 4602, N: 181, P: 29, K: 231) and Sinapis (C: 4806, N: 152, P: 18, K: 195) was greater than that in spontaneous CC (C: 3115, N: 138, P: 21, K: 256). The opposite results were observed for K. The Rickman model, employed to estimate the amount of C, N and P in residues, yielded a good match between the simulated and measured values. In comparison to spontaneous CC, the newly proposed CCs have a higher potential to provide soil with C and N.


2020 ◽  
Author(s):  
Xin Shu ◽  
Yiran Zou ◽  
Liz Shaw ◽  
Lindsay Todman ◽  
Mark Tibbett ◽  
...  

<p>Cover crops are a contemporary tool to sustainably manage agricultural soils by boosting fertility, suppressing weeds and disease, and benefiting cash crop yields, thus securing future food supply. Due to the different chemical composition of crop residues from different plant families, we hypothesised that a mixture of cover crop residues may have a greater potential to improve soil health than the sum of the parts. Our experiment focused on the impact of four cover crops (clover, sunflower, radish and buckwheat) and their quaternary mixture on soil respiration and the soil microbial community in an 84-day microcosm experiment. On average adding cover crop residues significantly (P < 0.001) increased soil respiration from 29 to 343 µg C g<sup>-1</sup> h<sup>-1</sup> and microbial biomass from 18 to 60 µg C g<sup>-1</sup>, compared to the unamended control during 84 days’ incubation. Cover crop addition resulted in a significant (P < 0.001) alteration of the soil microbial community structure compared to that of the control. The quaternary mixture of cover crop residues significantly (P = 0.011) increased soil respiration rate by 23.79 µg C g<sup>-1</sup> h<sup>-1</sup> during the period 30 to 84 days after residue incorporation, compared to the average of the four individual residues. However, no significant difference in the size of the microbial biomass was found between the mixture and the average of the four individuals, indicating the mixture may invest resources which transit dormant microbial species into a metabolically active state and thus boost microbial respiration. Analysis of similarity of microbial community composition (ANOSIM) demonstrated the mixture significantly (P = 0.001) shifted microbial community structure away from buckwheat (R = 0.847), clover (R = 0.688), radish (R = 0.285) and sunflower (R = 0.785), respectively. This implies cover crop residues provide a niche specialization and differentiation on a selection of microbial communities that favour certain plant compounds. While applying cover crop residues has positive impacts on soil function, we found that applying a mixture of cover crop residues may provide greater potential to select for microorganisms or activate dormant microbial species which result in higher soil function. The outcome of this study will help seed suppliers to design, and farmers to select, novel cover crop mixtures which enhance soil function synergistically, leading to a greater potential to sustainably improve soil health.</p>


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 151-163 ◽  
Author(s):  
Erin R. Haramoto ◽  
Daniel C. Brainard

The objectives of this research were to evaluate temporal and spatial variability in the impact of strip tillage and oat cover crop residue on Powell amaranth emergence and to determine the role of rainfall in mediating these effects. In field experiments conducted in 2010, 2011, and 2012, Powell amaranth seeds were sown in a fully factorial combination of two tillage types (strip tillage [ST] vs. full-width tillage [FWT]) and cover crop residue (oats vs. none) at either 0 d after tillage (DAT) or 7 to 13 DAT to monitor emergence at two timings. In ST plots, seeds were sown both in the tilled zone (“in-row,” IR), and between these tilled zones (“between-row,” BR). In 2011 and 2012, three levels of rainfall were simulated in subplots by either excluding rainfall, allowing natural rainfall, or supplementing rainfall with irrigation. In most cases, ST and oats residue either had no effect on or suppressed emergence of Powell amaranth sown at the early planting date. In contrast, the emergence response to ST and residue at the later planting date was generally smaller and more variable, with increases in emergence observed in several cases. Differences between tillage systems in emergence were most pronounced in the BR zone but also occurred IR in some cases, suggesting that interzonal effects on biotic or abiotic factors influenced emergence. Oat residue effects—but rarely tillage effects—were often mediated by simulated rainfall, with increases in emergence occurring mostly in dry conditions and decreases occurring more commonly in wetter conditions. These results demonstrate that the suppressive effects of cover crops and ST on weed emergence are inconsistent, temporally and spatially variable, and dependent on complex interactions with factors including rainfall.


2011 ◽  
Vol 27 (2) ◽  
pp. 148-156 ◽  
Author(s):  
N.R. Hulugalle ◽  
L.A. Finlay ◽  
T.B. Weaver

AbstractCover crops in minimum or no-tilled systems are usually killed by applying one or more herbicides, thus significantly increasing costs. Applying herbicides at lower rates with mechanical interventions that do not disturb or bury cover crop residues can, however, reduce costs. Our objective was to develop a management system with the above-mentioned features for prostrate cover crops on permanent beds in an irrigated Vertisol. The implement developed consisted of a toolbar to which were attached spring-loaded pairs of parallel coulter discs, one set of nozzles between the individual coulter discs that directed a contact herbicide to the bed surfaces to kill the cover crop and a second set of nozzles located to direct the cheaper glyphosate to the furrow to kill weeds. The management system killed a prostrate cover crop with less trafficking, reduced the use of more toxic herbicides, carbon footprint, labor and risk to operators. Maximum depth of compaction was more but average increase was less than that with the boom sprayer control.


HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1568-1574 ◽  
Author(s):  
E. Ryan Harrelson ◽  
Greg D. Hoyt ◽  
John L. Havlin ◽  
David W. Monks

Throughout the southeastern United States, vegetable growers have successfully cultivated pumpkins (Cucurbita pepo) using conventional tillage. No-till pumpkin production has not been pursued by many growers as a result of the lack of herbicides, no-till planting equipment, and knowledge in conservation tillage methods. All of these conservation production aids are now present for successful no-till vegetable production. The primary reasons to use no-till technologies for pumpkins include reduced erosion, improved soil moisture conservation, long-term improvement in soil chemical and microbial properties, and better fruit appearance while maintaining similar yields compared with conventionally produced pumpkins. Cover crop utilization varies in no-till production, whereas residue from different cover crops can affect yields. The objective of these experiments was to evaluate the influence of surface residue type on no-till pumpkin yield and fruit quality. Results from these experiments showed all cover crop residues produced acceptable no-till pumpkin yields and fruit size. Field location, weather conditions, soil type, and other factors probably affected pumpkin yields more than surface residue. Vegetable growers should expect to successfully grow no-till pumpkins using any of the winter cover crop residues tested over a wide range in residue biomass rates.


2019 ◽  
Vol 11 (5) ◽  
pp. 58
Author(s):  
José Carlos Mazetto Júnior ◽  
José Luiz Rodrigues Torres ◽  
Danyllo Denner de Almeida Costa ◽  
Venâncio Rodrigues e Silva ◽  
Zigomar Menezes de Souza ◽  
...  

The decomposition of plant residues, the changes in the total organic carbon (TOC) and the fractions of soil organic matter (SOM) occur differently in irrigated areas. The objective of this study was to quantify the biomass production, the decomposition of cover crops residues and relate them with the changes n the content and fractions of SOM in an irrigated area of vegetable crops. Six types of cover crop treatments were evaluated: brachiaria (B); sunn hemp (S); millet (M); B + S; B + M; S + M, plus an additional treatment (native area), with 4 repetitions. The production of fresh (FB) and dry biomass (DB), the rate of plant residue decomposition, TOC, SOM fractions and the coefficient of SOM (QSOM) were quantified. It was observed that the greatest and the lowest volume of crop residues were from the B and S cover crop, respectively. The cover crops in monoculture presented great decomposition rates and short half-life when compared to mixtures of cover crop. The TOC and QSOM were great in the 0 to 0.05 m soil layer, and in the M + S cover crop mixture, when compared to the 0.05 to 0.1 m soil layer and to other cover crops. Among the SOM fractions, the humin predominated in the most superficial soil layer (0 to 0.05 m).


2018 ◽  
Vol 22 (3) ◽  
pp. 124
Author(s):  
Rijanto Hutasoit

Pasture legumes is a very high quality of forage. The limited land is the problem of its development. Integration with oil palm plantations is one of the potentials for its development. This study was aimed to investigate the productivity of several legumes (Arachis glabrata, Stylosanthes guianensis, Clitoria ternatea, and Chamaecrista rotundifolia) as forages and cover crop. The potential tests were conducted in oil palm area of 4608 m<sup>2</sup>, in a complete block design with four treatments (legume species) and three replications. Parameters observed were: Legum production, leaf/stem ratio, chemical composition of legume, concentration of N, P in the soil, microbes in the soil, leguminous digestibility and palm fruit production. Results showed that the highest legume production (DM) was (P&lt;0.05) in the species of Clitoria ternatea (16.15 tons ha-1year-1), the highest leaf/stem ratio (P&lt;0.05) was in the Arachis glabrata (2.09). The chemical composition (DM) did not differ (P&gt;0.05) ranged from 33.75 to 35.75%, the organic matter (OM) varied greatly (P&lt;0.05) the highets was in Clitoria ternatea. The highest Crude protein (P&lt;0.05) was in Clitoria ternatea 17.84%. NDF concentrations did not differ (P&gt;0.05). The lowest ADF concentration (P&lt;0.05) was in Chamaecrista rotundifolia. The concentration of N in the soil indicated that early year of activity was similar (average 0.10%), at the end of activity increased (P&lt;0.05) in treatment Stylosanthes guianensis (0.16%). The highest population of N-fixation bacteria of 1.76x109 and phosphate solvent of 9.8x105 were in the treatment of Clitoria ternatea. Production of fresh fruit bunches of the palm was relatively similar (P&gt;0.05) ranged from 16.52-19.21 tons ha<sup>-1</sup>year<sup>-1</sup>. It is concluded that Clitoria ternatea is the best species of legume tested as forage and cover crop in oil palm plantations.


2020 ◽  
Vol 25 (6) ◽  
pp. 929-952
Author(s):  
Martin A. Bolinder ◽  
Felicity Crotty ◽  
Annemie Elsen ◽  
Magdalena Frac ◽  
Tamás Kismányoky ◽  
...  

Abstract International initiatives are emphasizing the capture of atmospheric CO2 in soil organic C (SOC) to reduce the climatic footprint from agroecosystems. One approach to quantify the contribution of management practices towards that goal is through analysis of long-term experiments (LTEs). Our objectives were to analyze knowledge gained in literature reviews on SOC changes in LTEs, to evaluate the results regarding interactions with pedo-climatological factors, and to discuss disparities among reviews in data selection criteria. We summarized mean response ratios (RRs) and stock change rate (SCR) effect size indices from twenty reviews using paired comparisons (N). The highest RRs were found with manure applications (30%, N = 418), followed by aboveground crop residue retention and the use of cover crops (9–10%, N = 995 and 129), while the effect of nitrogen fertilization was lowest (6%, N = 846). SCR for nitrogen fertilization exceeded that for aboveground crop residue retention (233 versus 117 kg C ha−1 year−1, N = 183 and 279) and was highest for manure applications and cover crops (409 and 331 kg C ha−1 year−1, N = 217 and 176). When data allows, we recommend calculating both RR and SCR because it improves the interpretation. Our synthesis shows that results are not always consistent among reviews and that interaction with texture and climate remain inconclusive. Selection criteria for study durations are highly variable, resulting in irregular conclusions for the effect of time on changes in SOC. We also discuss the relationships of SOC changes with yield and cropping systems, as well as conceptual problems when scaling-up results obtained from field studies to regional levels.


Author(s):  
Letusa Momesso ◽  
Carlos A. C. Crusciol ◽  
Rogério P. Soratto ◽  
Carlos A. C. Nascimento ◽  
Ciro A. Rosolem ◽  
...  

AbstractOptimizing agronomic efficiency (AE) of nitrogen (N) fertilizer use by crops and enhancing crop yields are challenges for tropical no-tillage systems since maintaining crop residues on the soil surface alters the nutrient supply to the system. Cover crops receiving N fertilizer can provide superior biomass, N cycling to the soil and plant residue mineralization. The aims of this study were to (i) investigate N application on forage cover crops or cover crop residues as a substitute for N sidedressing (conventional method) for maize and (ii) investigate the supply of mineral N in the soil and the rates of biomass decomposition and N release. The treatments comprised two species, i.e., palisade grass [Urochloa brizantha (Hochst. Ex A. Rich.) R.D. Webster] and ruzigrass [Urochloa ruziziensis (R. Germ. and C.M. Evrard) Crins], and four N applications: (i) control (no N application), (ii) on live cover crops 35 days before maize seeding (35 DBS), (iii) on cover crop residues 1 DBS, and (iv) conventional method (N sidedressing of maize). The maximum rates of biomass decomposition and N release were in palisade grass. The biomass of palisade grass and ruzigrass were 81 and 47% higher in N application at 35 DBS compared with control in ruzigrass (7 Mg ha−1), and N release followed the pattern observed of biomass in palisade and ruzigrass receiving N 35 DBS (249 and 189 kg N ha−1). Mineral N in the soil increased with N application regardless of cover crop species. Maize grain yields and AE were not affected when N was applied on palisade grass 35 DBS or 1 DBS (average 13 Mg ha−1 and 54 kg N kg−1 maize grain yield) compared to conventional method. However, N applied on ruzigrass 35 DBS decreased maize grain yields. Overall, N fertilizer can be applied on palisade grass 35 DBS or its residues 1 DBS as a substitute for conventional sidedressing application for maize.


Sign in / Sign up

Export Citation Format

Share Document