scholarly journals Perinatal exposure to a high-fat diet alters proopiomelanocortin, neuropeptide Y and dopaminergic receptors gene expression and the food preference in offspring adult rats

2022 ◽  
Vol 82 ◽  
Author(s):  
L. S. Santos ◽  
R. J. B. Matos ◽  
G. S. Cordeiro ◽  
G. S. Perez ◽  
D. A. E. Santo ◽  
...  

Abstract Exposure to the hight-fat diet may alter the control of food intake promoting hyperphagia and obesity. The objective of this study was to investigate the effects of this diet on dopamine receptors (drd1 and drd2), proopiomelanocortin (pomc), neuropeptideY (npy) genes expression, and preference food in adult rats. Wistar female rats were fed a hight-fat or control diet during pregnancy and lactation. The offspring were allocated into groups: Lactation – Control (C) and High-fat (H). Post-weaning – Control Control (CC), offspring of mothers C, fed a control diet after weaning; Control Hight-fat (CH), offspring of mothers C, fed a hight-fat diet after weaning; Hight-fat Control (HC), offspring of mothers H, fed with control diet after weaning; and Hight-fat Hight-fat (HH), offspring of mothers H, fed a H diet after weaning. The groups CH and HH presented greater expression of drd1 in comparison to the CC. The drd2 of CH and HC presented higher gene expression than did CC. HH presented higher pomc expression in comparison to the other groups. HC also presented greater expression in comparison to CH. The npy of HH presented greater expression in relation to CH and HC. HH and HC have had a higher preference for a high-fat diet at 102º life’s day. The high-fat diet altered the gene expression of the drd1, drd2, pomc and npy, and influencing the food preference for high-fat diet.

2021 ◽  
pp. 2100065
Author(s):  
Zhen Li ◽  
Viola J. Kosgei ◽  
Anais Bison ◽  
Jean‐Marc Alberto ◽  
Remi Umoret ◽  
...  

1989 ◽  
Vol 257 (3) ◽  
pp. 917-919 ◽  
Author(s):  
I Dugail ◽  
X Le Liepvre ◽  
A Quignard-Boulangé ◽  
J Pairault ◽  
M Lavau

Adipsin gene expression as assessed by mRNA amounts was examined in adipose tissue of genetically obese rats at the onset (16 days of age) or at later stages (30 and 60 days of age) of obesity. Amounts of mRNA were equivalent in obese and lean rats at 16 days of age. In adult rats, we observed a 2-fold decrease in adipsin mRNA in the obese rats compared with control lean rats, which was abolished by weaning the animals on a high-fat diet. Our data show that, in sharp contrast with genetically obese mice, adipsin mRNA is not suppressed in genetically obese Zucker rats.


2009 ◽  
Vol 21 (9) ◽  
pp. 84
Author(s):  
K. Chiam ◽  
S. Jindal ◽  
N. Ryan ◽  
S. Moretta ◽  
M. De Blasio ◽  
...  

The World Health Organization has stated that 75% of adults worldwide are overweight, and in Australia nearly 25% of men are obese. Obesity is associated with an increased risk of cardiovascular disease, type 2 diabetes and cancer, with 30 to 40% of the latter possibly preventable by maintaining a healthy weight (The International Association for the Study of Obesity). Prostate cancer is the most commonly diagnosed cancer in men and there is increasing evidence that obesity increases the risk of prostate cancer mortality. High birth weight, an indication of excess nutrition during foetal development, has been associated with an increased risk of childhood and adult obesity, and for cancer. Using an animal model, we investigated whether obese mothers are more likely to have obese sons who are at an increased risk of developing prostate abnormalities and thus prostate cancer, in adulthood. Female rats were fed with either a control diet (4g fat/kg) or high fat diet (100g fat/kg) from before mating and throughout pregnancy. Prostate tissues were collected from the male offspring at 90 days (post-puberty) and 180 days (young adult). Histological analysis of the day 90 prostates identified hyperplasia in 100% of the ventral lobes (VL) and 64% of the dorsolateral lobes (DLP) in offspring of the maternal high fat group compared to 0% in each respectively, in those of the maternal control diet group. The VL is the most hormone sensitive prostate lobe of the rat, while the DLP is considered the equivalent of the human peripheral zone, the region from which the majority of human prostate cancers arise. These results suggest for the first time that maternal high fat diet may induce prostate abnormalities in male offspring that may in turn, predispose to an increased risk of prostate cancer in later life.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Dragan Milenkovic ◽  
Agnieszka Gomułkiewicz ◽  
Cecile Gladine ◽  
Dariusz Janczak ◽  
Irmina Grzegorek ◽  
...  

Abstract Objectives We have previously shown that 12 months (mo.) high-fat diet (HFD) in pigs led to pathophysiological alterations, incl. fattening and increased femoral artery intima-media-thickness, which were partly reversed after 3 mo. return to control diet (Zabek et al., PLoS One 2017). The aim of this study was to decipher underlying mechanism of action of these dietary interventions on the arteries by nutrigenomics analyses of intima and media of aorta. Methods 32 female pigs were divided into 3 groups: Control diet (CD) for 12 mo; HFD for 12 mo; 3) Reversal diet group (RD): HFD for 9 mo followed by CD for 3 mo After 12 mo animals were killed and abdominal aorta collected. RNA was isolated from aorta intima and media for whole genome microarray analyses followed by bioinformatics analyses. Results HFD compared to CD group significantly affected gene expression profile in intima with genes belonging to the chemotaxis, inflammation or endothelial permeability. RD induced gene expression profile was distinct from the CD group. This suggests that 3 mo of reversal to CD is not sufficient to correct gene expression changes induced by HFD. Comparison of RD profile with that of HFD group revealed a group of genes with opposite expression, e.g., genes regulating inflammation, toll-like cell signaling pathway or cytoskeleton organization involved in the regulation of cell permeability. This suggests that return to the RD only partly restored gene expression alterations due to the HFD. Significant changes in expression of genes in media following HFD were also observed, such as genes involved in cytoskeleton organization and migration MAPK signaling. As for intima, the expression profile of media of pigs on RD was different on that of these on CD diet. Compared to HFD, a group of genes involved in PI3K or MAPK pathways presented opposite expression suggesting that RD can partly correct the changes in genomic effect induced by HFD. Conclusions This study revealed genomic modifications induced by long-term HFD consumption on arterial intima and media. The return to normal diet for 3 mo was not sufficient to counteract the genomic effect of long-term HFD consumption. Funding Sources WROVASC Integrated Cardiovascular Centre, co-financed by the European Regional Development Fund.


Endocrinology ◽  
2012 ◽  
Vol 153 (6) ◽  
pp. 2823-2830 ◽  
Author(s):  
Hisashi Masuyama ◽  
Yuji Hiramatsu

The links between obesity in parents and their offspring and the role of genes and a shared environment are not completely understood. Adipocytokines such as leptin and adiponectin play important roles in glucose and lipid metabolism. Therefore, we examined whether the offspring from dams exposed to a high-fat diet during pregnancy (OH mice) exhibited hypertension, insulin resistance, and hyperlipidemia along with epigenetic changes in the expression of adipocytokine genes. OH mice were significantly heavier than the offspring of dams exposed to a control diet during pregnancy (OC mice) from 14 wk of age after an increased caloric intake from 8 wk. OH mice exhibited higher blood pressure and worse glucose tolerance than the OC mice at 24 wk. Total triglyceride and leptin levels were significantly higher and the adiponectin level was significantly lower in OH compared with OC mice at 12 wk of age. This was associated with changes in leptin and adiponectin expression in white adipose tissue. There were lower acetylation and higher methylation levels of histone H3 at lysine 9 of the promoter of adiponectin in adipose tissues of OH mice at 2 wk of age as well as at 12 and 24 wk of age compared with OC mice. In contrast, methylation of histone 4 at lysine 20 in the leptin promoter was significantly higher in OH compared with OC mice. Thus, exposure to a high-fat diet in utero might cause a metabolic syndrome-like phenomenon through epigenetic modifications of adipocytokine, adiponectin, and leptin gene expression.


2017 ◽  
Vol 38 (11) ◽  
pp. 1954-1967 ◽  
Author(s):  
ChengCheng Lin ◽  
XiaoYun Wu ◽  
YuLei Zhou ◽  
Bei Shao ◽  
XiaoTing Niu ◽  
...  

Maternal environmental factors such as diet have consequences on later health of the offspring. We found that maternal high-fat diet (HFD) exposure renders adult offspring brain more susceptible to ischemic injury. The present study was further to investigate whether HFD consumption during rat pregnancy and lactation influences the cerebral vasculature in adult male offspring. Besides the endothelial damage observed in the transmission electron microscopy, the MCAs of offspring from fat-fed dams fed with control diet (HFD/C) also displayed increased wall thickness and media/lumen ratio, suggesting that cerebrovascular hypertrophy or hyperplasia occurs. Moreover, smaller lumen diameter and elevated myogenic tone of the MCAs over a range of intralumenal pressures indicate inward cerebrovascular remodeling in HFD/C rats, with a concomitant increase in vessel stiffness. More importantly, both wire and pressure myography demonstrated that maternal HFD intake also enhanced the MCAs contractility to ET-1, accompanied by increases in ET types A receptor (ETAR) but not B (ETBR) density in the arteries. Furthermore, ETAR antagonism but not ETBR antagonism restored maternal HFD-induced cerebrovascular dysfunction in adult offspring. Taken together, maternal diet can substantially influence adult offspring cerebrovascular health, through remodeling of both structure and function, at least partially in an ET-1 manner.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A537-A537
Author(s):  
Shiori Minabe ◽  
Kinuyo Iwata ◽  
Hitoshi Ozawa

Abstract Metabolic stress resulting from a nutrient excess causes infertility in both sexes. Kisspeptin-neurokinin B-dynorphin (KNDy) neurons in the arcuate nucleus (ARC) have been suggested to be key players in reproduction via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release in mammalian species. In this study, we investigated the sex differences in the effects of a high-fat diet (HFD) on KNDy-associated gene expression in the ARC to determine the pathogenic mechanism underlying obesity-induced infertility. Wistar-Imamichi strain male and female rats (7 weeks of age) were fed either a standard diet (10% calories from fat) or high-fat diet (45% calories from fat) for 4 months. In male rats, the HFD caused a significant suppression of Kiss1(encoding kisspeptin), Tac3(encoding neurokinin B), and Pdyn(encoding dynorphin A) gene expression in the ARC, resulting in a decrease in plasma luteinizing hormone (LH) levels. In female rats, 58% of the HFD-fed female rats exhibited irregular estrous cycles, while the other rats showed regular cycles. LH pulses were found, and the numbers of ARC Kiss1-,Tac3-, and Pdyn-expressing cells were high in control animals and almost allHFD-fed female rats, but two out of 10 rats showed profound HFD-induced suppression of LH pulse frequency and reduction in these cells. No statistical differences in LH secretion or ARC KNDy gene expression were observed between HFD-fed and control female rats. Additionally, the number of Gnrh1-expressing cells in the preoptic area was comparable between the groups in both sexes. Our findings revealed that HFD-fed male rats showed KNDy-dependent infertility, while irregular menstruation was mainly induced by KNDy-independent pathways during the incipient stage of obese infertility in female rats. Taken together, hypothalamic kisspeptin neurons in male rats may be susceptible to HFD-induced obesity compared with those in female rats.


Author(s):  
María J. Ríos-Lugo ◽  
Vanesa Jiménez-Ortega ◽  
Pilar Cano-Barquilla ◽  
Pilar Fernández Mateos ◽  
Eduardo J. Spinedi ◽  
...  

AbstractPrevious studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured.Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin.After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats.The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2885
Author(s):  
Dawid Gawliński ◽  
Kinga Gawlińska ◽  
Irena Smaga

In recent years, strong evidence has emerged that exposure to a maternal high-fat diet (HFD) provokes changes in the structure, function, and development of the offspring’s brain and may induce several neurodevelopmental and psychiatric illnesses. The aims of this study were to evaluate the effects of a maternal HFD during pregnancy and lactation on depressive-like behavior and Cnr1 gene expression (encoding the CB1 receptor) in brain structures of rat offspring and to investigate the epigenetic mechanism involved in this gene expression. We found that a maternal HFD during pregnancy and lactation induced a depressive-like phenotype at postnatal days (PNDs) 28 and 63. We found that a maternal HFD decreased the Cnr1 mRNA levels in the prefrontal cortex with the increased levels of miR-212-5p and methylation of CpG islands at the Cnr1 promoter and reduced the level of Cnr1 gene expression in the dorsal striatum with an increased level of miR-154-3p in adolescent male offspring. A contrasting effect of a maternal HFD was observed in the hippocampus, where upregulation of Cnr1 gene expression was accompanied by a decrease of miR-154-3p (at PNDs 28 and 63) and miR-212-5p (at PND 63) expression and methylation of CpG islands at the Cnr1 promoter in male offspring. In summary, we showed that a maternal HFD during pregnancy and lactation triggered several epigenetic mechanisms in the brains of rat offspring, which may be related to long-lasting alterations in the next generation and produce behavioral changes in offspring, including a depressive-like phenotype.


2019 ◽  
Vol 100 (6) ◽  
pp. 1561-1570 ◽  
Author(s):  
Supipi Mirihagalle ◽  
Tianming You ◽  
Lois Suh ◽  
Chintan Patel ◽  
Liying Gao ◽  
...  

Abstract Di-(2-ethylhexyl) phthalate (DEHP) is a chemical that is widely used as a plasticizer. Exposure to DEHP has been shown to alter ovarian function in humans. Additionally, foods high in fat content, regularly found in the western diet, have been shown to be another potential disruptor of fetal ovarian function. Due to DEHP’s lipophilicity, high-fat foods can be easily contaminated. Therefore, exposure to DEHP and a high-fat diet are both health concerns, especially in pregnant women, and the effects of these exposures on fetal oocyte quality and quantity should be elucidated. In this study, our goal was to determine if there are synergistic effects of DEHP exposure at an environmentally relevant level (20 μg/kg body weight/day) and high-fat diet on oogenesis and folliculogenesis. Dams were fed with a high-fat diet (45 kcal% fat) or a control diet (10 kcal% fat) 1 week before mating and during pregnancy and lactation. The pregnant mice were dosed with DEHP (20 μg/kg body weight/day) or vehicle control from E10.5 to litter birth. We found that treatment with an environmentally relevant dosage of DEHP and consumption of high-fat diet significantly increases synapsis defects in meiosis and affects folliculogenesis in the F1 generation.


Sign in / Sign up

Export Citation Format

Share Document