scholarly journals Interference of aqueous and ethanolic solutions of Adiantum latifolium Lam. (Pteridaceae) leaves on in vitro Ceratocystis cacaofunesta mycelial growth

2019 ◽  
Vol 86 ◽  
Author(s):  
Matheus Bomfim da Cruz ◽  
Dhierllate Ferreira de Sousa ◽  
Leticia de Almeida Oliveira ◽  
Jerônimo Pereira de França ◽  
Lucimar Pereira de França ◽  
...  

ABSTRACT Ceratocystis cacaofunesta is the etiologic agent of “Ceratocystis wilt of cacao”, an irreversible disease that affects the vascular system of the plant. The management of the disease is difficult and economic and alternative solutions are needed. The medicinal plants compounds are known to have antimicrobial activity, and they could be an alternative choice in the C. cacaofunesta control. Considering this, this work aimed to verify the in vitro antifungal activity of aqueous and alcoholic solutions of Adiantum latifolium leaves on C. cacaofunesta. Plant material was collected at Atlantic Forest biome in cacao cultivation area in South of Bahia state. Aqueous and ethanolic solutions were made by boiling and maceration in 70% ethanol, respectively. After filtration, they were added to culture medium at 1, 5 and 10% dilution. A 7 mm disc colony of C. cacaofunesta was inoculated in the middle of the well containing Sabouraud dextrose agar (SDA) and the mycelial growth was observed. Controls consisted on SDA with sterile water or 70% ethanol at the same dilution of treatments, and Tebuconazole at 4 μg.mL-1. Neither aqueous nor ethanolic solutions inhibited the mycelial growth. However, aqueous solution presence induced a higher mycelial growth rate. Conversely, aqueous solution treatment induced mycelial growth. Tebuconazole showed important mycelial growth inhibition and it could be considered in C. cacaofunesta propagation control in areas where genetic selection or handling management still fail.

2021 ◽  
pp. 108-114
Author(s):  
Dale Walters

This chapter looks at two diseases affecting the vascular system of the cacao tree: vascular streak dieback, caused by the fungus Ceratobasidium theobromae, and wilt disease, caused by the fungus Ceratocystis cacaofunesta. Both diseases are considered as serious threats to cacao production and their impact has already been considerable and severe. Vascular streak dieback nearly destroyed the cacao industry in Papua New Guinea and is mercifully restricted to Indonesia, Malaysia, and South-East Asia, while Ceratocystis wilt has been reported in several countries in South and Central America, where it has caused substantial crop losses. The chapter examines the research being undertaken to better understand these diseases and how best to tackle them.


2016 ◽  
Vol 852 ◽  
pp. 1293-1299
Author(s):  
Hao Ran Zheng ◽  
Jing Zhang ◽  
Chen You ◽  
Min Fang Chen

The present investigation was carried out to optimize the hydrogen fluoride (HF) aqueous solution treatment for an Mg-2.5Zn-0.5Zr alloy, in order to improve the corrosion resistance of the material for orthopaedic applications. An MgF2 coating was formed on the surface of Mg-2.5Zn-0.5Zr alloy treated with HF solution. The effect of the HF concentration and processing time on the morphology and electrochemical performance of the MgF2 coating was systematically studied. The results showed that the MgF2 coating became thick gradually with the increase of the concentration of HF solution. However, the pinhole on the surface treated with 40% HF increased significantly. The coating thickness immersed in the same concentration of HF solution increased with immersion time, and cracks formed in the surface after four hours of immersion, resulting in a decrease in the corrosion potential. When the alloy was immersed in the HF solution with a concentration 20% at 37°C for 2h, a uniform and dense fluoride coating was formed, with a thickness of MgF2 layer of about 0.5μm. The corrosion potential of the coated Mg alloy in simulated body fluid (SBF) was 0.28V higher than the uncoated one. In addition, the fluoride-coated showed a good biocompatibility.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1293-1298 ◽  
Author(s):  
A. Amiri ◽  
Karen E. Bussey ◽  
Melissa B. Riley ◽  
G. Schnabel

Intravascular trunk infusion of propiconazole has been associated with beneficial effects on Armillaria root rot control in Prunus sp. but its basipetal movement has not been verified. Propiconazole, a sterol demethylation inhibitor fungicide, was more effective in inhibiting mycelial growth of Armillaria tabescens isolates in vitro (average effective concentration to inhibit mycelial growth by 50% [EC50 value] of 0.6 μg/ml) compared with fungicides from five other chemical classes (EC50 values ranging from 4.6 to >1,000 μg/ml). The fungicide was infused into the vascular system of peach trees in the spring, summer, and fall of 2005 and 2006. Propiconazole concentration was determined using gas chromatography mass spectrometry in trunk sections above and below the infusion site and in primary roots. Over two experimental years, spring and fall infusions resulted in consistent propiconazole accumulations in primary peach roots. Spring infusions yielded propiconazole concentrations of 1.7 μg/g in 2005 and 5.6 μg/g in 2006, whereas the highest accumulations were detected following fall infusions with 9.2 μg/g in 2005 and 6.7 μg/g in 2006. Propiconazole was also consistently detected in trunk sections collected from above and below the infusion site. The basipetal movement of propiconazole in peach trees and its inhibitory activity against A. tabescens in vitro suggest that propiconazole infusion could be useful for targeted Armillaria root rot management.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


2015 ◽  
Vol 1718 ◽  
pp. 97-102 ◽  
Author(s):  
Toralf Roch ◽  
Konstanze K. Julich-Gruner ◽  
Axel T. Neffe ◽  
Nan Ma ◽  
Andreas Lendlein

ABSTRACTPolymer-based therapeutic strategies require biomaterials with properties and functions tailored to the demands of specific applications leading to an increasing number of newly designed polymers. For the evaluation of those new materials, comprehensive biocompatibility studies including cyto-, tissue-, and immunocompatibility are essential. Recently, it could be demonstrated that star-shaped amino oligo(ethylene glycol)s (sOEG) with a number average molecular weight of 5 kDa and functionalized with the phenol-derived moieties desaminotyrosine (DAT) or desaminotyrosyl tyrosine (DATT) behave in aqueous solution like surfactants without inducing a substantial cytotoxicity, which may qualify them as solubilizer for hydrophobic drugs in aqueous solution. However, for biomedical applications the polymer solutions need to be free of immunogenic contaminations, which could result from inadequate laboratory environment or contaminated starting material. Furthermore, the materials should not induce uncontrolled or undesired immunological effects arising from material intrinsic properties. Therefore, a comprehensive immunological evaluation as perquisite for application of each biomaterial batch is required. This study investigated the immunological properties of sOEG-DAT(T) solutions, which were prepared using sOEG with number average molecular weights of 5 kDa, 10 kDa, and 20 kDa allowing analyzing the influence of the sOEG chain lengths on innate immune mechanisms. A macrophage-based assay was used to first demonstrate that all DAT(T)-sOEG solutions are free of endotoxins and other microbial contaminations such as fungal products. In the next step, the capacity of the different DAT(T)-functionalized sOEG solutions to induce cytokine secretion and generation of reactive oxygen species (ROS) was investigated using whole human blood. It was observed that low levels of the pro-inflammatory cytokines interleukin(IL)-1β and IL-6 were detected for all sOEG solutions but only when used at concentrations above 250 µg·mL-1. Furthermore, only the 20 kDa sOEG-DAT induced low amounts of ROS-producing monocytes. Conclusively, the data indicate that the materials were not contaminated with microbial products and do not induce substantial immunological adverse effectsin vitro,which is a prerequisite for future biological applications.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Matías Olivera ◽  
Ninoska Delgado ◽  
Fabiola Cádiz ◽  
Natalia Riquelme ◽  
Iván Montenegro ◽  
...  

Gray and summer bunch rot are important diseases of table grapes due to the high economic and environmental cost of their control with synthetic fungicides. The ability to produce antifungal compounds against the causal agents Botrytis, Aspergillus, Penicillium, and Rhizopus of two microorganisms isolated from table grapes and identified as Hanseniaspora osmophila and Gluconobacter cerinus was evaluated. In dual cultures, both biocontrol agents (together and separately) inhibited in vitro mycelial growth of these pathogens. To identify the compounds responsible for the inhibitory effect, extractions were carried out with organic solvents from biocontrol agents separately. Through dual cultures with pathogens and pure extracts, only the hexane extract from H. osmophila showed an inhibitory effect against Botrytis cinerea. To further identify these compounds, the direct bioautography technique was used. This technique made it possible to determine the band displaying antifungal activity at Rf = 0.05–0.2. The compounds present in this band were identified by GC-MS and compared to the NIST library. The most abundant compounds, not previously reported, corresponded to alkanes, ketones, alcohols, and terpenoids. H. osmophila and G. cerinus have the potential to control the causal agents of gray and summer bunch rot of table grapes.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Giovanni S. Offeddu ◽  
Cynthia Hajal ◽  
Colleen R. Foley ◽  
Zhengpeng Wan ◽  
Lina Ibrahim ◽  
...  

AbstractThe glycocalyx on tumor cells has been recently identified as an important driver for cancer progression, possibly providing critical opportunities for treatment. Metastasis, in particular, is often the limiting step in the survival to cancer, yet our understanding of how tumor cells escape the vascular system to initiate metastatic sites remains limited. Using an in vitro model of the human microvasculature, we assess here the importance of the tumor and vascular glycocalyces during tumor cell extravasation. Through selective manipulation of individual components of the glycocalyx, we reveal a mechanism whereby tumor cells prepare an adhesive vascular niche by depositing components of the glycocalyx along the endothelium. Accumulated hyaluronic acid shed by tumor cells subsequently mediates adhesion to the endothelium via the glycoprotein CD44. Trans-endothelial migration and invasion into the stroma occurs through binding of the isoform CD44v to components of the sub-endothelial extra-cellular matrix. Targeting of the hyaluronic acid-CD44 glycocalyx complex results in significant reduction in the extravasation of tumor cells. These studies provide evidence of tumor cells repurposing the glycocalyx to promote adhesive interactions leading to cancer progression. Such glycocalyx-mediated mechanisms may be therapeutically targeted to hinder metastasis and improve patient survival.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 641-659
Author(s):  
Vahid Hosseini ◽  
Anna Mallone ◽  
Fatemeh Nasrollahi ◽  
Serge Ostrovidov ◽  
Rohollah Nasiri ◽  
...  

A critical review of healthy and diseased in vitro models of the vascular system and in particular for atherosclerosis, aneurysm, and thrombosis.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


Sign in / Sign up

Export Citation Format

Share Document