scholarly journals AGRICULTURAL MACHINERY AND IMPLEMENTS DESIGN PROCESS: GUIDELINES FOR SMALL AND MID-SIZED BUSINESSES

2016 ◽  
Vol 36 (1) ◽  
pp. 206-216 ◽  
Author(s):  
Renato L. Bergamo ◽  
Leonardo N. Romano

ABSTRACT This study aims at presenting the process of machine design and agricultural implements by means of a reference model, formulated with the purpose of explaining the development activities of new products, serving as a guideline to coach human resources and to assist in formalizing the process in small and medium-sized businesses (SMB), i.e. up to 500 employees. The methodology used included the process modeling, carried out from case studies in the SMB, and the study of reference models in literature. The modeling formalism used was based on the IDEF0 standard, which identifies the dimensions required for the model detailing: input information; activities; tasks; knowledge domains; mechanisms; controls and information produced. These dimensions were organized in spreadsheets and graphs. As a result, a reference model with 27 activities and 71 tasks was obtained, distributed over four phases of the design process. The evaluation of the model was carried out by the companies participating in the case studies and by experts, who concluded that the model explains the actions needed to develop new products in SMB.

2021 ◽  
Vol 1 ◽  
pp. 141-150
Author(s):  
Honorine Harlé ◽  
Pascal Le Masson ◽  
Benoit Weil

AbstractIn industry, there is at once a strong need for innovation and a need to preserve the existing system of production. Thus, although the literature insists on the necessity of the current change toward Industry 4.0, how to implement it remains problematic because the preservation of the factory is at stake. Moreover, the question of the evolution of the system depends on its innovative capability, but it is difficult to understand how a new rule can be designed and implemented in a factory. This tension between preservation and innovation is often explained in the literature as a process of creative destruction. Looking at the problem from another perspective, this article models the factory as a site of creative heritage, enabling creation within tradition, i.e., creating new rules while preserving the system of rules. Two case studies are presented to illustrate the model. The paper shows that design in the factory relies on the ability to validate solutions. To do so, the design process can explore and give new meaning to the existing rules. The role of innovation management is to choose the degree of revision of the rules and to make it possible.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayman Ahmed Ezzat Othman ◽  
Fatma Othman Alamoudy

Purpose This paper aims to develop a framework for optimising building performance through the integration between risk management (RM) and building information modelling (BIM) during the design process. Design/methodology/approach To achieve this aim, a research strategy consisting of literature review, case studies and survey questionnaire is designed to accomplish four objectives. First, to examine the concepts of design process, building performance, RM and BIM; second, to present three case studies to explain the role of using RM and BIM capabilities towards optimising building performance; third, to investigate the perception and application of architectural design firms in Egypt towards the role of RM and BIM for enhancing building performance during the design process; and finally, to develop a framework integrating RM and BIM during the design process as an approach for optimising building performance. Findings Through literature review, the research identified 18 risks that hamper optimising building performance during the design process. In addition, 11 building performance values and 20 BIM technologies were defined. Results of data analysis showed that “Design budget overrun”, “Lack of considering life cycle cost” and “Inefficient use of the design time” were ranked the highest risks that affect the optimisation of building performance. Respondents ranked “Risk avoid” or “Risk transfer” as the most risk responses adopted in the Egyptian context. In addition, “BIM As Built” was ranked the highest BIM technology used for overcoming risks during the design process. These findings necessitated taking action towards developing a framework to optimising building performance. Originality/value The research identified the risks that affect optimising building performance during the design process. It focuses on improving the design process through using the capabilities of BIM technologies towards overcoming these risks during the design process. The proposed framework which integrates RM and BIM represents a synthesis that is novel and creative in thought and adds value to the knowledge in a manner that has not previously occurred.


Author(s):  
Yoshiki Shimomura ◽  
Sadao Tanigawa ◽  
Hideaki Takeda ◽  
Yasushi Umeda ◽  
Tetsuo Tomiyama

Abstract Function is a key concept to integrate design object modeling and design process modeling in design. We here propose the FEP (Functional Evolution Process) model in order to integrate design object modeling and design process modeling. In the FEP model, the model of a design object is evolved through three steps, i.e., function description, function actualization and function evaluation. Function description is the step in which a designer modifies required functions of a design object. Function actualization depicts a process to obtain physical descriptions from functional description. Function evaluation is a process to measure realizability of functions of the design object. However, among other steps, how to treat the function evaluation is one of the most important theme, because evaluation executed by designers is based on subjective, ambiguous and tacit standards. We discuss a methodology for evaluating function and propose the function content that quantifies functions and enables evaluation of functions. The function content is a similar concept of Shannon’s information content and we show an example of functional optimization based on this scheme.


Author(s):  
Masaharu Yoshioka ◽  
Tetsuo Tomiyama

Abstract Most of the previous research efforts for design process modeling had such assumptions as “design as problem solving,” “design as decision making,” and “design by analysis,” and did not explicitly address “design as synthesis.” These views lack notion and understanding about synthesis. Compared with analysis, synthesis is less understood and clarified. This paper discusses our fundamental view on synthesis and approach toward a reasoning framework of design as synthesis. To do so, we observe the designer’s activity and formalize knowledge operations in design processes. From the observation, we propose a hypothetical reasoning framework of design based on multiple model-based reasoning. We discuss the implementation strategy for the framework.


Author(s):  
Erik M. W. Kolb ◽  
Jonathan Hey ◽  
Hans-Ju¨rgen Sebastian ◽  
Alice M. Agogino

Metaphors have successfully been used by new product development and design teams to help frame the design situation and communicate new products to stakeholders. Yet, the process of finding a compelling metaphor often turns upon stumbling upon it or a flash of insight from a team member. We present Meta4acle: a Metaphor Exploration Tool for design that suggests possible metaphors to make the process more one of ‘seeking out’ than ‘stumbling upon’ an effective metaphor. The tool takes data about the project in the form of a title, domain and key associations required of the metaphor and returns suggestions from a database of possible metaphor sources. We built a Meta4acle prototype and evaluated it with positive results for three existing design case studies. We present plans for its full implementation and evaluation.


2021 ◽  
Author(s):  
◽  
Samantha Erickstad

<p>This research explores the significance of the stair as a spatial and symbolic architectural experience. The stepped form integrated with architecture. The stair is an integral feature of architecture which has the potential to be specifically designed to enhance space and create particular experiences. A stair is not only a functional object, but a medium for design. Metaphorical staircases are absent in contemporary architecture as a loss of meaning has resulted in monotonous designs devoid of figurative or poetic significance. The staircase has been a fundamental component of architecture since Neolithic times, however has recently been neglected. The stepped form has represented many themes including hierarchy, transcendence, or authority. In contrast, the contemporary staircase has embraced pragmatics. Safety restrictions, efficiency, and budget constraints, result in disregard for aesthetics and meaning. Film provides a behavioural setting in which to analyse how people move, behave, interact, and experience staircases. A range of films will be analysed to identify techniques for meaningful stair design. The influence of surreal qualities will also be determined to enhance an experience. Surreal imagery offers the opportunity to create dreamlike space, activating the subconscious. The metaphoric connotations of staircases will be explored through six research categories; the stair as Symbolic, Illusive, Transitional, Kinetic, Psychological, and Iconic. Design case studies will then investigate the intersection of the staircase as architecture, filmic representation, and surreal experience. The stepped building Casa Malaparte in Italy acts as a reference model for the successful integration of these concepts. With influence of these themes, the staircase can once again become widely acknowledged as architecture.</p>


TERRITORIO ◽  
2012 ◽  
pp. 107-111
Author(s):  
Vitaliano Tosoni

Research activities are trying to address the issues of the recovery, redevelopment and enhancement of the buildings of the Tor Bella Monica neighbourhood through the formulation of a set of operations designed to achieve the social, cultural and architectural promotion of these buildings. By looking at the technical limitations resulting from the heavy prefabricated methods used to build them and also through reference to national and international case studies, a picture was constructed of possible types of action to take as an initial core set of operations designed to support the design process through graphic simulations, the indication of operational areas and the magnitude of the intervention proposed.


Author(s):  
Jung S. Oh ◽  
Dean Q. Lewis ◽  
Daeyong Lee ◽  
Gary A. Gabriele

Abstract Many different types of snap-fits have been developed to replace conventional fasteners, and research efforts have been made to characterize their performance. It is often tedious to look for design equations for unique types of snap-fits to calculate the insertion and retention forces. If found, these equations tend to be long, complex, and difficult to use. For this reason, a snap-fit calculator has been created to help in designing integral attachment features. Studies of seven most commonly used snap-fits (annular snap, bayonet-and-finger, cantilever hook, cantilever-hole, compressive hook, L-shaped hook, and U-shaped, hook) were used to provide the equations implemented in this snap-fit calculator, more fasteners than any other snap-fit calculator available. This tool aids in designing snap-fits to meet specific loading requirements by allowing the designer to size the feature to obtain desired estimates for maximum insertion and retention forces. The software for this design tool was written in JAVA™ language that is independent of operating system platforms and can be distributed at a company site-wide over an intranet or worldwide over the Internet. This makes it easily accessible to a user, and universal upgrades can be achieved by simply updating the software at the server location. Designers will find this tool to be useful in the design process and the most convenient way to estimate the performance of snap-fits. This paper describes the development and operation of the IFP snap-fit calculator including several case studies comparing the calculated results to experimental data.


2021 ◽  
Author(s):  
Hui Zhao ◽  
Wei Liu ◽  
Xiang Rao ◽  
Guanglong Sheng ◽  
Huazhou Andy Li ◽  
...  

Abstract The data-driven interwell simulation model (INSIM) has been recognized as an effective tool for history matching and interwell-connectivity characterization of waterflooding reservoirs. INSIM-FT-3D (FT: front tracking) was recently developed to upgrade the applicationdimension of INSIM series data-driven models from two-dimensional (2D) to three-dimensional (3D). However, INSIM-FT-3D cannot accurately infer the dynamic change of well-connectivity and predict well's bottom-hole pressure (BHP). The main purpose of this study intends to expand the capability of INSIM-FT-3D to empower for the assimilation of BHPs, the reliable prediction of water breakthrough and the characterization of dynamic interwell-connectivities. The default setting of well index (WI) in INSIM-FT-3D based on Peaceman's equation does not yield accurate BHP estimates. We derive a WI that can honor the BHPs of a reference model composed of a set of 1D connections. When history matching BHPs of a 3D reservoir, we show that the derived WI is a better initial guess than that obtained from Peaceman's equation. We also develop a flow-path-tracking (FPT) algorithm to calculate the dynamic interwell properties (allocation factors and pore volumes (PVs)). Besides, we discuss the relationship between the INSIM-family methods and the traditional grid-based methods, which indicates that the INSIM-family methods can calculate the transmissibility of the connection between coarse-scale cells in a more accurate manner. As an improvement of INSIM-FT-3D, the newly proposed data-driven model is denoted as INSIM-FPT-3D. To verify the correctness of the derived WI, we present a 1D problem and a T-shaped synthetic reservoir simulation model as the reference models. BHPs and oil production rates are obtained as the observed data by running these two reference models with total injection/production-rate controls. An INSIM-FPT-3D model is created by specifying the transmissibilities and PVs that are the same as those in the reference model. By applying the derived WIs in INSIM-FPT-3D, the resulting BHPs and oil rates obtained agree well with the reference model without further model calibration. Applying INSIM-FPT-3D to a synthetic multi-layered reservoir shows that we obtain a reasonable match of both BHPs and oil rates with INSIM-FPT-3D. Compared with the FrontSim model, the INSIM-FPT-3D model after history matching is shown to match the dynamic PVs from FrontSim reasonably well and can correctly predict the timing of water breakthrough. By allowing for the assimilation of BHP data, we enable INSIM-FPT-3D to history match a green field with limited production history and forecast the timing of water breakthrough. The improved INSIM-FPT-3D leads to more accurate characterization of the interwell connectivities.


Sign in / Sign up

Export Citation Format

Share Document