scholarly journals Study on the Tribological Behavior of Wear and Friction Coefficient on AISI M35 High-Speed Steel with and without DLC Coating

2022 ◽  
Vol 25 ◽  
Author(s):  
Paulo Sérgio Martins ◽  
José Rubens Gonçalves Carneiro ◽  
Elhadji Cheikh Talibouya Ba ◽  
Vitor Ferreira Vieira ◽  
Diego Boaventura Amaral ◽  
...  
2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Zhefeng Lei ◽  
Xiaodong Zhu ◽  
Yanhuai Li ◽  
Zhongxiao Song ◽  
Haiping Liu ◽  
...  

Effects of partial pressure of methane on deposition rate, hardness, bonding strength and friction coefficient of TiAlN/TiAlC0.37N0.63 multilayer coating were investigated. The TiAlN coating was deposited at a N2 flow rate of 70 sccm, and TiAlC0.37N0.63 coating were deposited at a N2 flow rate of 35 sccm and a CH4 flow rate of 35 sccm. TiAlN/TiAlC0.37N0.63 multilayer coatings with different modulation periods but the same total thickness of 3.56 μm were deposited on high speed steel (HSS) substrates using multi-arc ion plating technology. Microhardness and tribological measurement show that the multilayer coating with a modulating ratio of 1:1 and a modulation period of 68 nm had a hardness of 2793.9 HV0.10, an excellent bonding strength of 52 N, and the minimum friction coefficient of 0.46 and a relatively low wear rate.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Wang ◽  
Xiongrong Huang ◽  
Wei Wang ◽  
Haosheng Han ◽  
Hongyu Duan ◽  
...  

Purpose The purpose of this study is to determine the tribological behavior and wear mechanism of a polytetrafluoroethylene (PTFE)/polyester (PET) fabric composite for application as a self-lubricating liner suitable for high-speed and low-load friction conditions. Design/methodology/approach The effects of different loads and sliding speeds on the friction coefficients and wear characteristics of the composite were studied using reciprocating friction tests. Scanning electron microscopy, extended depth-of-field microscopy, and energy-dispersive X-ray spectrometry was used to analyze the worn surface morphology, wear depth and elemental content of the lubrication films, respectively. Findings The friction coefficient curves of the composites presented a long-term steady wear stage under different sliding conditions. With increasing sliding speed, the friction coefficient and wear depth of the composite slowly increased. The film-forming mechanism of the composite revealed that the PTFE/PET ply yarn on the composite surface formed complete PTFE lubrication films at the initial sliding stage. Originality/value The PTFE/PET fabric composite maintained good friction stability and high-speed adaptability, which demonstrates that the composite has broad application prospects as a highly reliable self-lubricating bearing liner with a long lifespan.


1993 ◽  
Vol 308 ◽  
Author(s):  
Ru Wang

ABSTRACTThe validity of Lc of film failure is studied with friction — detected scratch test . The specimens used in the experiment are ion-plated TiN and Ti films,Chemical-Plated NiPCu films on steel of various hardness,ion beam mixed plated TiN films on optical glass,The morphology of failed films was studied under optical microscope and scanning electronmicroscope,The composition of starting failure of films was analyzed with electro — probe. It is found that in the curves of scratch tests of ion-plated TiN and Ti films on high-speed steel,the load corresponding the sudden change of the horizontal force is the same as the critical load of film failure,however,the critical load obtained in the scratch test of the ion-plated TiN and Ti films on soft steel is the some deference compared with optical microscope analyzed, that is principally due to the property of films and substrates (hardness and coefficient).The morphology and mechanism of ion — plated TiN and Ti films on high —speed steel are also studied in the paper.The adhesion between film and substrate is an effective method in evaluating the films property. After apprasing the effectiveness of acoustic emission monitoring scratch test, someone think that no matter coated with hard or soft film it is effective on the brittle hard substrate. However,there exist errors to different extent on other film-substrate system,and the scratch test is inapplicable for soft film-soft substrate system[1]. P. A. Steinmann pointed out while studying the factors influnceing the critical load Lc,that friction coefficient is a key factor on Lc,it provided valuable information in measuring Lc,but it think it is imporsible to measure Lc totally dependent on sudden change friction or friction coefficient, howeveer, for a specific coating substrate system,it is acceptable to say that Lc is dependent on friction coefficient[2]. This paper study experimentally on the friction detected scratch test and found out that effectiveness of Lc varies substantially in different film-substrate system. The author studiied the regularity of various system and discuse the season. The failure morphology and principles of ion-plated TiN and Ti film on highspeed steel are also analyzed in this paper.


2011 ◽  
Vol 25 (31) ◽  
pp. 4261-4264 ◽  
Author(s):  
MANABU YASUOKA

A hard film coat can improve a tool's performance. In this study, the frictional properties of an uncoated tool and a coated tool with TiN were measured against that of SCM440 (42 CrMo 4) steel. The results showed there was no significant difference between the friction coefficient of the high-speed steel tool and the tool coated with TiN but the friction coefficient of uncoated tool was slightly lower than that of the steel. In the second part of the study, coats of TiN , TiC , CrN , and TiAlN were deposited on high-speed steel and the wear characteristics were determined with a pin-on-disk wear examination. The differences in the friction coefficients were attributed to the difference in the wear of the slipping material. There were large differences in the adhesion characteristics on the surface of the slipping material. The author suggest that these differences influence the characteristics of the cutting tool.


2011 ◽  
Vol 217-218 ◽  
pp. 625-630 ◽  
Author(s):  
Yan Jun Wang ◽  
Bin Wang ◽  
Li Ying Yang ◽  
Shou Ren Wang

High speed steel based ceramic preforms with three-dimensionally interpenetrated micropores were fabricated using the mixture of TiH2, CaCO3 and stearic acid as pore-forming agent. A self-made vacuum high pressure infiltration furnace was used to infiltrate the preforms with Pb-Sn based solid lubricants to create almost fully dense self-lubrication composites. The microstructure and properties of HSS-based self-lubrication composites were investigated as a function of sintered porosity. A quantitative analysis of microstructure was correlated with crushing strength,microhardness and wear rate to understand the influence of pore size, shape and distribution on mechanical and tribological behavior. Crushing strength and microhardness decreased with an increase in porosity. Meanwhile the decrease in microhardness with increasing porosity was slightly. The friction coefficient of HSS-based self-lubrication composites decreased with increasing the volume fraction of lubricant due to the self-lubrication and unique micropore structure. Within the range of lubricant volume fraction from 0% to 14%, the wear rate of the composites decreased steadily with the increase of lubricant content in the composites. Micropore structure and lubricant volume fraction play an important role in determining wear resistance of the composites whereas the measured bulk properties seem to be of minor importance.


Author(s):  
V. A. Khorev ◽  
V. I. Rumyantsev ◽  
G. A. Ponomarenko ◽  
A. S. Osmakov ◽  
V. N. Fischev

The friction units of modern power turbines require the use of special materials with a stable and low coefficient of friction in extreme conditions. The most successfully used for these purposes are antifriction carbon-graphite materials, in particular isotropic pyrolytic carbon. It is established that isotropic pyrolytic carbon has a lower friction coefficient and wear rate than ATG-S antifriction graphite. Based on the analysis of the microstructure and fractograms of wear traces, it was suggested that the difference in the tribological behavior of materials is caused by various mechanisms of material destruction. It is also shown that isotropic pyrolytic carbon tends to decrease the wear rate and friction coefficient with increasing density. Ill. 7. Ref. 10. Tab. 1.


2005 ◽  
Vol 297-300 ◽  
pp. 1430-1438
Author(s):  
Chung Woo Cho ◽  
Sung Hoon Jeong ◽  
Seung Ho Ahn ◽  
Jung Gu Kim ◽  
Young Ze Lee

Four different multilayered coatings with different Al concentrations were deposited on AISI D2 steel. The prepared coating samples were designated as WC-Ti0.6Al0.4N, WC-Ti0.53Al0.47N, WC-Ti0.5Al0.5N and WC-Ti0.43Al0.57N. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a load of 5.38N. The tests were carried out at room temperature in air by employing AISI 52100 steel ball (HR = 66) with a diameter of 10mm. The surface morphology and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the WC-Ti1-xAlxN coatings with increasing Al concentration.


Wear ◽  
2017 ◽  
Vol 376-377 ◽  
pp. 1580-1585 ◽  
Author(s):  
Liang Hao ◽  
Hui Wu ◽  
Dongbin Wei ◽  
Xiawei Cheng ◽  
Jingwei Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document