scholarly journals Relationship between postural control in upright stance and virtual reality in post-stroke individuals

2020 ◽  
Vol 33 ◽  
Author(s):  
João Paulo Paes ◽  
Alaércio Perotti Junior ◽  
Ana Maria Forti Barela ◽  
José Angelo Barela

Abstract Introduction: Considered the second leading cause of death worldwide, stroke leads to several consequences resulting from the injury in regions responsible for the processing of sensorimotor information, leading to deficits in the maintenance and performance of postural control. Objective: To relate the performance of postural control during upright stance and a virtual reality task in post-stroke individuals. Method: Nine post-stroke individuals, aged 30 to 76 years, characterized by the Berg balance scale, Fugl - Meyer scale and Mini Mental State Examination participated in this study. Postural performance was measured by the center of pressure under bipedal conditions, in anteroposterior and mediolateral directions and unipedal with the affected and unaffected sides, using a force platform. Virtual reality performance was measured by distance and time required to perform a task in the Nintendo Wii®. Results: Revealed significant correlations between distance and displacement time of the affected side (distance x disc_affected = 0.667 | p = 0.025; time x disc_affected = 0.683 | p = 0.021) and between variables time and mean amplitude of mediolateral oscillation (time x amo_ml = -0.733 | p = 0.012), time and mediolateral and anteroposterior mean velocity (time x vm_ml = -0.617 | p = 0.038; time x vm_ap = -0.833 | p = 0.003) and between time and area (time x area = -0.633 | p = 0.034). Conclusion: the performance of standing postural control in post-stroke individuals, represented by measures of weight discharge and variables of postural control, presented a significant relation with the variables of virtual reality.

2021 ◽  
Vol 11 (4) ◽  
pp. 1510
Author(s):  
Charles Morizio ◽  
Maxime Billot ◽  
Jean-Christophe Daviet ◽  
Stéphane Baudry ◽  
Christophe Barbanchon ◽  
...  

People who survive a stroke are often left with long-term neurologic deficits that induce, among other impairments, balance disorders. While virtual reality (VR) is growing in popularity for postural control rehabilitation in post-stroke patients, studies on the effect of challenging virtual environments, simulating common daily situations on postural control in post-stroke patients, are scarce. This study is a first step to document the postural response of stroke patients to different challenging virtual environments. Five subacute stroke patients and fifteen age-matched healthy adults were included. All participants underwent posturographic tests in control conditions (open and closed eyes) and virtual environment without (one static condition) and with avatars (four dynamic conditions) using a head-mounted device for VR. In dynamic environments, we modulated the density of the virtual crowd (dense and light crowd) and the avoidance space with the avatars (near or far). Center of pressure velocity was collected by trial throughout randomized 30-s periods. Results showed that more challenging conditions (dynamic condition) induced greater postural disturbances in stroke patients than in healthy counterparts. Our study suggests that virtual reality environments should be adjusted in light of obtaining more or less challenging conditions.


2006 ◽  
Vol 22 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Jay Hertel ◽  
Lauren C. Olmsted-Kramer ◽  
John H. Challis

A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.


2012 ◽  
Vol 7 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Rafał Stemplewski ◽  
Janusz Maciaszek ◽  
Maciej Tomczak ◽  
Robert Szeklicki ◽  
Dorota Sadowska ◽  
...  

The aim of the study was to compare the effect of exercise on postural control (PC) among the elderly with lower or higher level of habitual physical activity (HPA). The study involved 17 elderly men (mean age 72.9 ± 4.79 years). Mean velocity of the center of pressure (COP) displacements was measured using a force plate both before and after cycle ergometer exercise. A significantly higher increase in mean velocity of COP displacements and its component in the sagittal plane were observed in the group with lower level of HPA in comparison with the group with higher HPA level. Simultaneously, a relatively similar reaction to the exercise in the frontal plane was observed in both groups, possibly connected to the specific type of used exercise, which mainly activated the sagittal muscles.


2014 ◽  
Vol 22 (4) ◽  
pp. 645-653 ◽  
Author(s):  
Wagner Oliveira Batista ◽  
Edmundo de Drummond Alves Junior ◽  
Flávia Porto ◽  
Fabio Dutra Pereira ◽  
Rosimere Ferreira Santana ◽  
...  

OBJECTIVE: to ascertain the influence of the length of institutionalization on older adults' balance and risk of falls.METHOD: to evaluate the risk of falls, the Berg Balance Scale and the Timed Get Up and Go test were used; and for measuring postural balance, static stabilometry was used, with acquisition of the elliptical area of 95% and mean velocities on the x and y axes of center of pressure displacement. Parametric and nonparametric measures of association and comparison (α<0.05) were used.RESULTS: there was no significant correlation between the length of institutionalization and the tests for evaluation of risk of falling, neither was there difference between groups and within subgroups, stratified by length of institutionalization and age. In the stabilometric measurements, there was a negative correlation between the parameters analyzed and the length of institutionalization, and difference between groups and within subgroups.CONCLUSION: this study's results point to the difficulty of undertaking postural control tasks, showing a leveling below the clinical tests' reference scores. In the stabilometric behavior, one should note the reduction of the parameters as the length of institutionalization increases, contradicting the assumptions. This study's results offer support for the development of a multi-professional model for intervention with the postural control and balance of older adults living in homes for the aged.


2019 ◽  
Vol 9 (11) ◽  
pp. 113 ◽  
Author(s):  
Harish Chander ◽  
Sachini N. K. Kodithuwakku Arachchige ◽  
Christopher M. Hill ◽  
Alana J. Turner ◽  
Shuchisnigdha Deb ◽  
...  

Background: Virtual reality (VR) is becoming a widespread tool in rehabilitation, especially for postural stability. However, the impact of using VR in a “moving wall paradigm” (visual perturbation), specifically without and with anticipation of the perturbation, is unknown. Methods: Nineteen healthy subjects performed three trials of static balance testing on a force plate under three different conditions: baseline (no perturbation), unexpected VR perturbation, and expected VR perturbation. The statistical analysis consisted of a 1 × 3 repeated-measures ANOVA to test for differences in the center of pressure (COP) displacement, 95% ellipsoid area, and COP sway velocity. Results: The expected perturbation rendered significantly lower (p < 0.05) COP displacements and 95% ellipsoid area compared to the unexpected condition. A significantly higher (p < 0.05) sway velocity was also observed in the expected condition compared to the unexpected condition. Conclusions: Postural stability was lowered during unexpected visual perturbations compared to both during baseline and during expected visual perturbations, suggesting that conflicting visual feedback induced postural instability due to compensatory postural responses. However, during expected visual perturbations, significantly lowered postural sway displacement and area were achieved by increasing the sway velocity, suggesting the occurrence of postural behavior due to anticipatory postural responses. Finally, the study also concluded that VR could be used to induce different postural responses by providing visual perturbations to the postural control system, which can subsequently be used as an effective and low-cost tool for postural stability training and rehabilitation.


2016 ◽  
Vol 28 (03) ◽  
pp. 1650020
Author(s):  
Chun-Ju Chang ◽  
Jen-Suh Chern ◽  
Tsui-Fen Yang ◽  
Sai-Wei Yang

The degeneration of sensory and motor systems due to aging could affect the elderly’s posture and increase the risk of falling. The strategies applied to maintain postural stability might be different between ages, especially in the condition requiring both proprioception and vision sensorimotor coupling. This study proposed a novel sensorimotor assessment protocol to evaluate the postural control ability across the aging process, by using the computerized dynamic posturography and the virtual reality (VR) system. Ten young and 20 elderly healthy adults without fall experience were recruited, and were assessed on a continuous-perturbed platform with or without the VR-based visual interference in a random sequence. Measured variables of the center of pressure as well as the weight-bearing ratio were analyzed and compared. Results showed that the postural sway was significantly larger in all subjects under the VR condition, but the young subjects could rapidly adjust the body to regain postural stability in a rhythmic and symmetric manner; whereas, the elderly adults performed less effectively in postural response. We suggested that the application of the multiple sensation disturbances with VR could effectively evaluate the postural control ability among the healthy elderly. The proposed assessing protocol is also recommended for training the sensorimotor integration to improve the dynamic postural control ability.


2019 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
Felix Wachholz ◽  
Federico Tiribello ◽  
Arunee Promsri ◽  
Peter Federolf

Dual-tasking charges the sensorimotor system with performing two tasks simultaneously. Center of pressure (COP) analysis reveals the postural control that is altered during dual-tasking, but may not reveal the underlying neural mechanisms. In the current study, we hypothesized that the minimal intervention principle (MIP) provides a concept by which dual-tasking effects on the organization and prioritization of postural control can be predicted. Postural movements of 23 adolescents (age 12.7 ± 1.3; 8 females) and 15 adults (26.9 ± 2.3) were measured in a bipedal stance with eyes open, eyes closed and eyes open while performing a dual-task using a force plate and 39 reflective markers. COP data was analyzed by calculating the mean velocity, standard deviation and amplitude of displacement. Kinematic data was examined by performing a principal component analysis (PCA) and extracting postural movement components. Two variables were determined to investigate changes in amplitude (aVark) and in control (Nk) of the principal movement components. Results in aVark and in Nk agreed well with the predicted dual-tasking effects. Thus, the current study corroborates the notion that the MIP should be considered when investigating postural control under dual-tasking conditions.


Author(s):  
Dorota Borzucka ◽  
Krzysztof Kręcisz ◽  
Zbigniew Rektor ◽  
Michał Kuczyński

Abstract Background The aim of this study was to compare the postural control of the Poland national women’s volleyball team players with a control group of non-training young women. It was hypothesized that volleyball players use a specific balance control strategy due to the high motor requirements of their team sport. Methods Static postural sway variables were measured in 31 athletes and 31 non-training women. Participants were standing on a force plate with eyes open, and their center of pressure signals were recorded for the 20s with the sampling rate of 20 Hz in the medial-lateral (ML) and anterior-posterior (AP) planes. Results In both AP and ML planes, athletes had lower range and higher fractal dimension of the COP. They had also higher peak frequency than control group in the ML plane only. The remaining COP indices including variability, mean velocity and mean frequency did not display any intergroup differences. Conclusion It can be assumed that due to the high motor requirements of their sport discipline Polish female volleyball players have developed a unique posture control. On the court they have to distribute their sensory resources optimally between balance control and actions resulting from the specifics of the volleyball game. There are no clearly defined criteria for optimal postural strategies for elite athletes, but they rather vary depending on a given sport. The results of our research confirm this claim. Trial registration The tests were previously approved by the Bioethical Commission of the Chamber of Physicians in Opole. (Resolution No. 151/13.12.2007). This study adheres to the CONSORT guidelines.


Author(s):  
Yoan Espinoza-Valdés ◽  
Rocio Córdova-Arellano ◽  
Maiter Espinoza-Espinoza ◽  
Diego Méndez-Alfaro ◽  
Juan Pablo Bustamante-Aguirre ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder that affects postural and cardiac autonomic control. However, since it is unknown whether these changes are associated, the objective of this study was to determine whether such a relationship exists. Twenty-three patients with PD participated. The RR intervals were recorded in different positions and heart rate variability (HRV) was analyzed. Postural sway was analyzed based on the center of pressure. No significant differences on HRV indices were induced by postural change. A correlation was found between these indices and postural control, high frequency (HF), and anterior-posterior (AP) root mean square (RMS-AP) (r = 0.422, p = 0.045), low frequency (LF)/HF, and AP mean velocity (r = 0.478, p = 0.021). A correlation was found between HRV induced by postural change and postural control, Δ LF/HF and RMS-AP (r = 0.448, p = 0.032), Δ LF/HF and ellipse area (r = 0.505, p = 0.014), Δ LF/HF and AP mean velocity (r = −0.531; p = 0.009), and Δ LF and AP mean velocity (r = −0.424, p = 0.044). There is an association between the autonomic and postural systems, such that PD patients with blunted cardiac autonomic function in both the supine and orthostatic positions have worse postural control.


Motor Control ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Cédrick T. Bonnet

In an upright stance, individuals sway in unpredictable ways. Their eyes also move in unpredictable ways in fixation tasks. The objective of this study was to analyze visual functions, postural control, and cognitive involvement in stationary gaze. A total of 14 healthy young adults performed a fixation task and a free-viewing task (three trials per task, 45 s per trial). As expected, the results showed many (n = 32) significant positive Pearson correlation coefficients between the eye and center of pressure/body (head, neck, and lower back) movements in the fixation task. In the free-viewing task, the correlations were nonsignificant. Only 3 of the 32 significant correlations (9.4%) were significantly related to cognitive involvement (measured with a subjective questionnaire). These results indirectly strengthened the validity of the synergistic model of postural control.


Sign in / Sign up

Export Citation Format

Share Document