scholarly journals Growth and endoglucanase activity of Acetivibrio cellulolyticus grown in three different cellulosic substrates

1999 ◽  
Vol 30 (4) ◽  
pp. 310-314 ◽  
Author(s):  
Cássia Regina Sanchez ◽  
Clarita Schvartz Peres ◽  
Heloiza Ramos Barbosa

The growth kinetics of Acetivibrio cellulolyticus grown in medium containing different carbon sources (cellobiose, amorphous or crystalline cellulose) was investigated. The specific growth rate was higher in cellobiose fed cultures than in the presence of the other two substrates. Endoglucanase production was greater in cultures grown on amorphous cellulose; enzyme activity increased during the stationary phase in cultures grown on crystalline cellulose.

1985 ◽  
Vol 31 (9) ◽  
pp. 763-766 ◽  
Author(s):  
Göran Molin

The growth of Pseudomonas putida ATCC 11172 on L-asparagine, citrate, D-glucose, and L-lactate was followed in air and in 40% CO2 + air, using batch and carbon-limited continuous cultures. Batch cultures in air utilized a mixture of the carbon sources simultaneously. However, a change to 40% CO2 favoured the utilization of glucose. The maximum specific growth rate (μmax) in air was about 0.3 h−1 on glucose and 0.6 h−1 on the other carbon sources. In CO2, the μmax for glucose was reduced by 16% compared with almost 60–70% for the others. An order of preference for the different carbon sources in continuous cultures was determined by comparing the dilution rates at which the different carbon sources started to appear in the effluent. Glucose was the first compound to appear as the dilution rate increased (lowest preference when grown in air). In 40% CO2, the μmax for glucose was slightly higher than the others and the recorded preference for glucose in continuous culture was equal to that for citrate but was somewhat lower than that of lactate and asparagine. D-Gluconate and glucono-δ-lactone were produced as a step in the utilization of glucose. The D-gluconate production was enhanced by CO2.


1999 ◽  
Vol 564 ◽  
Author(s):  
H. Y. Huang ◽  
L. J. Chen

AbstractThe oxidation of Si catalyzed by 170-nm-thick Cu3Si at elevated temperatures has been investigated by transmission electron microscopy and Auger electron spectroscopy. For wet oxidation at 140–180 °C, the growth rate of the oxide layer was increased with the temperature. On the other hand, as the temperature was increased above 200 °C, the growth rate slowed down. The growth kinetics of oxide was investigated. Controlling mechanisms for the growth of oxide owing to the grain growth of Cu3Si are discussed. The activation energy for the linear growth of oxide was measured to be 0. 19 ± 0.1 eV.


2010 ◽  
Vol 76 (16) ◽  
pp. 5423-5431 ◽  
Author(s):  
Alexander C. Hayes ◽  
Steven N. Liss ◽  
D. Grant Allen

ABSTRACT The growth kinetics of Hyphomicrobium spp. and Thiobacillus spp. on dimethyl sulfide (DMS) and methanol (in the case of Hyphomicrobium spp.) in an enrichment culture created from a biofilter cotreating DMS and methanol were studied. Specific growth rates of 0.099 h−1 and 0.11 h−1 were determined for Hyphomicrobium spp. and Thiobacillus spp., respectively, growing on DMS at pH 7. These specific growth rates are double the highest maximum specific growth rate for bacterial growth on DMS reported to date in the literature. When the pH of the medium was decreased from pH 7 to pH 5, the specific growth rate of Hyphomicrobium spp. decreased by 85%, with a near 100-fold decline in the yield of Hyphomicrobium 16S rRNA gene copies in the mixed culture. Through the same pH shift, the specific growth rate and 16S rRNA gene yield of Thiobacillus spp. remained similar. When methanol was used as a substrate, the specific growth rate of Hyphomicrobium spp. declined much less over the same pH range (up to 30%) while the yield of 16S rRNA gene copies declined by only 50%. Switching from an NH4 +-N-based source to a NO3 −-N-based source resulted in the same trends for the specific growth rate of these microorganisms with respect to pH. This suggests that pH has far more impact on the growth kinetics of these microorganisms than the nitrogen source. The results of these mixed-culture batch experiments indicate that the increased DMS removal rates observed in previous studies of biofilters cotreating DMS and methanol are due to the proliferation of DMS-degrading Hyphomicrobium spp. on methanol at pH levels not conducive to high growth rates on DMS alone.


1999 ◽  
Vol 46 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Urs Lendenmann ◽  
Mario Snozzi ◽  
Thomas Egli

Kinetic models for microbial growth describe the specific growth rate (μ) as a function of the concentration of the growth-limiting nutrient (s) and a set of parameters. A typical example is the model proposed by Monod, where μ is related to s using substrate affinity (Ks) and the maximum specific growth rate (μmax). The preferred method to determine such parameters is to grow microorganisms in continuous culture and to measure the concentration of the growth-limiting substrate as a function of the dilution rate. However, owing to the lack of analytical methods to quantify sugars in the microgram per litre range, it has not been possible to investigate the growth kinetics of Escherichia coli in chemostat culture. Using an HPLC method able to determine steady-state concentrations of reducing sugars, we previously have shown that the Monod model adequately describes glucose-limited growth of E. coli ML30. This has not been confirmed for any other sugar. Therefore, we carried out a similar study with galactose and found steady-state concentrations between 18 and 840 μg·L-1 for dilution rates between 0.2 and 0.8·h-1, respectively. With these data the parameters of several models giving the specific growth rate as a function of the substrate concentration were estimated by nonlinear parameter estimation, and subsequently, the models were evaluated statistically. From all equations tested, the Monod model described the data best. The parameters for galactose utilisation were μmax = 0.75·h-1 and Ks = 67 μg·L-1. The results indicated that accurate Ks values can be estimated from a limited set of steady-state data when employing μmax measured during balanced growth in batch culture. This simplified procedure was applied for maltose, ribose, and fructose. For growth of E. coli with these sugars, μmax and Ks were for maltose 0.87·h-1, 100 μg·L-1; for ribose 0.57·h-1, 132 μg·L-1, and for fructose 0.70·h-1, 125 μg·L-1. Key words: monod model, continuous culture, galactose, glucose, fructose, maltose, ribose.


2012 ◽  
Vol 33 (4) ◽  
pp. 651-665 ◽  
Author(s):  
Marta Pawlak ◽  
Marcin Bizukojć

A kinetic model to describe lovastatin biosynthesis by Aspergillus terreus ATCC 20542 in a batch culture with the simultaneous use of lactose and glycerol as carbon sources was developed. In order to do this the kinetics of the process was first studied. Then, the model consisting of five ordinary differential equations to balance lactose, glycerol, organic nitrogen, lovastatin and biomass was proposed. A set of batch experiments with a varying lactose to glycerol ratio was used to finally establish the form of this model and find its parameters. The parameters were either directly determined from the experimental data (maximum biomass specific growth rate, yield coefficients) or identified with the use of the optimisation software. In the next step the model was verified with the use of the independent sets of data obtained from the bioreactor cultivations. In the end the parameters of the model were thoroughly discussed with regard to their biological sense. The fit of the model to the experimental data proved to be satisfactory and gave a new insight to develop various strategies of cultivation of A. terreus with the use of two substrates.


Author(s):  
C. S. Richardson ◽  
D. Upadhyay ◽  
S. Mandjiny ◽  
L. Holmes

Bacillus thuringiensis (Bt) is a soil-dwelling, Gram-positive bacterium that is used as a biological pesticide and used to genetically engineer plants due to the toxic proteins it produces. B. thuringiensis was studied in batch cultures to determine the specific growth rates and doubling times. The purpose of this experiment was to research the growth kinetics of Bacillus thuringiensis in a 2L bioreactor and a 5L bioreactor containing growth media at different environmental conditions. Fermentation parameters were controlled by utilizing a Sartorius Stedim Biostat® A+ bioreactor system for bacterial growth. The environmental conditions included temperature, agitation, and aeration. The specific growth rates of B. thuringiensis were determined. The optimal conditions for the 2L bioreactor were 200 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 0.30 hr and the shortest doubling time 2.3 hr. For the 5L bioreactor, the optimal conditions were 150 RPM, 30°C, 1.5 VVM, and with the highest specific growth rate 1.2 hr and the fastest doubling time 0.6 hr.


2003 ◽  
Vol 66 (2) ◽  
pp. 200-207 ◽  
Author(s):  
T. P. OSCAR

The green fluorescent protein (GFP) from the jellyfish Aequorea victoria can be expressed in, and used to follow the fate of, Salmonella in microbiologically complex ecosystems such as food. As a first step in the evaluation of GFP as a tool for the development of predictive models for naturally contaminated food, the present study was undertaken to compare the growth kinetics of parent and GFP-producing strains of Salmonella. A previously established sterile chicken burger model system was used to compare the growth kinetics of stationary-phase cells of parent and GFP strains of Salmonella Enteritidis, Salmonella Typhimurium, and Salmonella Dublin. Growth curves for constant temperatures from 10 to 48°C were fit to a two- or three-phase linear model to determine lag time, specific growth rate, and maximum population density. Secondary models for the growth parameters as a function of temperature were generated and compared between the parent and GFP strain pairs. The effects of GFP on the three growth parameters were significant and were affected by serotype and incubation temperature. The expression of GFP reduced specific growth rate and maximum population density while having only a small effect on the lag times of the three serotypes. The results of this study indicate that the growth kinetics of the GFP strains tested were different from those of the parent strains and thus would not be good marker strains for the development of predictive models for naturally contaminated food.


REAKTOR ◽  
2015 ◽  
Vol 14 (3) ◽  
pp. 187 ◽  
Author(s):  
Wijanarka Wijanarka ◽  
Endang Sutariningsih Soetarto ◽  
Kumala Dewi ◽  
Ari Indrianto

ACTIVITY OF INULINASE OF Pichia Manshuria AND FUSAN F4 ON BATCH FERMENTATION UDING DAHLIA TUBER (Dahlia sp) AS A SUBSTRATE. A dahlia tuber is one of the common inulin rich crops. Inulin is formed by units of fructans, which are polymers of D-fructose. Inulinases (EC 3.2.1.7) catalyze the hydrolysis of inulin, producing fructooligosaccharides (FOS), inulooligosaccharides (IOS), pulullan, acetone, butanol and sorbitol, therefore dahlia tubers are used as growth media. The inulin hydrolyzing activity has been reported from various microbial strains Pichia manshurica and Fusan F4 which is the result of fusion protoplast. The objective of this study was to determine the activity of inulinase Pichia manshurica and Fusan F4 on the substrate dahlia tubers. Fusan F4 to increase inulinase activity compared with Pichia manshurica and to investigate the kinetics of specific growth rate (μ) and time double (g) from of Pichia manshurica and Fusan F4. The results showed that the exponential phase occurs at 0-12 hour without a lag phase. P. manshurica has a specific growth rate (μ) of 0.18/hour with time double (g) 3.90 hours and the inulinase enzyme activity of 0.56 IU, while for Fusan F4 consecutive has a value μ of 0.20/hour, g of 3.49 hours and the activity of 0.69 IU. The conclusion of this research is to improve Fusan F4 inulinase activity and the ability has to be better than the Pichia manshurica.Umbi dahlia merupakan salah satu umbi yang mengandung inulin. Inulin merupakan polimer fruktan yang dapat dipecah oleh enzim inulinase (E.C. 3.2.1.7) menjadi fruktosa. Fruktosa merupakan bahan baku dasar untuk pembuatan FOS, IOS, pulullan, aseton dan sorbitol, oleh karena itu umbi dahlia digunakan sebagai media pertumbuhan. Enzim inulinase ini secara indigenous dimiliki oleh Pichia manshurica dan Fusan F4 yang merupakan hasil fusi protoplas.Tujuan  penelitian ini adalah  untuk mengetahui aktivitas inulinase Pichia manshurica dan Fusan F4 pada substrat umbi dahlia, Fusan F4 mampu meningkatkan aktivitas inulinase dibandingkan dengan Pichia manshurica serta untuk mengetahui kinetika kecepatan pertumbuhan specifik (µ) dan waktu generasi (g) Pichia manshurica dan Fusan F4. Hasil penelitian menunjukkan bahwa fase  eksponensial terjadi pada jam ke-0 sampai jam ke-12 tanpa diikuti fase lag, Pichia manshurica mempunyai kecepatan pertumbuhan specific (µ)  sebesar 0,18/jam dengan waktu generasi (g) 3,90 jam dan aktivitas enzim inulinase yang dihasilkan sebesar 0,56 IU, sedangkan untuk fusan F4 secara berturut-turut mempunyai nilai µ sebesar 0,20/jam, g sebesar 3,49 jam dan aktivitas sebesar 0,69 IU. Kesimpulan dari penelitian ini adalah Fusan F4 mampu meningkatkan aktivitas inulinase dan mempunyai kemampuan lebih baik dibanding dengan Pichia manshurica.


2012 ◽  
Author(s):  
Mohd. Sahaid Hj. Kalil ◽  
Muhammad Zaki ◽  
Wan Mohtar Wan Yusoff ◽  
Mohammad Ramlan Mohd. Salleh

Penyelidikan ini bertujuan untuk menyaring substrat organik bagi untuk penghasilan sel–sel A. woodii teraruh demetilase. Pertumbuhan A. woodii dilakukan dalam medium “Balch” yang mengandungi sumber karbon berbeza dalam keadaan anaerobik. Sebanyak sebelas substrat telah diuji iaitu anisol, 2– dan 3–metoksifenol, asid vanilik, asid siringik, asid 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzoik, 2,3,4–, 2,4,5– dan 3,4,5–trimetoksi benzil alkohol. 2–metoksifenol merupakan substrat terbaik untuk pertumbuhan A. woodii pada kadar pertumbuhan spesifik 0.14 j–1. Penghasilan sel–sel teraruh demetilase dilakukan dalam kultur kemostat pada kadar pencairan (D) 0.0j–1. Sel-sel pada keadaan mantap dituai dalam keadaan anaerobik dan dipekatkan sebelum digunakan. Pertumbuhan A. woodii didapati maksimum dengan menggunakan kepekatan 0.62 g/L 2–metoksifenol sebagai sumber karbon tunggal. Tindak balas penyahmetilan oleh sel–sel A. woodii meningkat sebanyak 78% apabila 2–metoksifenol sebanyak 0.31 g/L ditambah dalam medium yang mengandungi fruktosa (1% w/v) semasa kultur kemostat. Kata kunci: tindak balas penyahmetilan; demetilase; sel-sel tertuai; metosiaromatik, Acetobacteriumwoodii The objective of this project was to screen organic substrate suitable for the growth of A. woodii, and as for the production of demethylase. A. woodii was grown in “Balch” medium containing different carbon sources. Eleven substrates were tested including anisole, 2– and 3–methoxyphenol, vanilic acid, syringic acid, 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzoic acid and 2,3,4–, 2,4,5– and 3,4,5–trimethoxy benzyl alcohol. It was found that 2–methoxyphenol was the best substrate with a specific growth rate of 0.14 h–1. The production of demethylase induced cells was carried out in a chemostat culture at a dilution rate (D) of 0.08 h–1. Cells were harvested at steady state of growth and concentrated before use. Optimal concentration of 2–methoxvphenol as the sole carbon source was 0.62 g/L. Demethylation reaction of 0.31 g/L 2–methoxyphenol by induced culture increases 78% relative to the chemostat culture containing only fructose. Key words: Demethylation reaction; demethylase; harvested cells; methoxyaromatic; Acetobacteriumwoodii


Author(s):  
A. R. D. Stebbing

It is suggested that the cumulative view of growth in which some index of biomass is plotted against time tends to obscure temporal variations in the growth process that might provide evidence of how it is controlled. Experiments with the colonial hydroid Campanularia flexuosa show that the action of a growth control mechanism can be demonstrated by considering changes in specific rates of growth determined at frequent intervals in time. However, it is also necessary to disturb the growth process slightly in order to initiate the action of the control mechanism, and having done so, to isolate the effect of the disturbance on growth and thus the action of the control mechanism. This is done by expressing the specific growth rate of organisms whose growth is disturbed as a percentage of that of control organisms of the same age.


Sign in / Sign up

Export Citation Format

Share Document