scholarly journals Neuroimaging in stroke and non-stroke pusher patients

2011 ◽  
Vol 69 (6) ◽  
pp. 914-919 ◽  
Author(s):  
Taiza Elaine Grespan Santos-Pontelli ◽  
Octavio Marques Pontes-Neto ◽  
Draulio Barros de Araujo ◽  
Antonio Carlos dos Santos ◽  
João Pereira Leite

Pusher behavior (PB) is a disorder of postural control affecting patients with encephalic lesions. This study has aimed to identify the brain substrates that are critical for the occurrence of PB, to analyze the influence of the midline shift (MS) and hemorrhagic stroke volume (HSV) on the severity and prognosis of the PB. We identified 31 pusher patients of a neurological unit, mean age 67.4±11.89, 61.3% male. Additional neurological and functional examinations were assessed. Neuroimaging workup included measurement of the MS, the HSV in patients with hemorrhagic stroke, the analysis of the vascular territory, etiology and side of the lesion. Lesions in the parietal region (p=0.041) and thalamus (p=0.001) were significantly more frequent in PB patients. Neither the MS nor the HSV were correlated with the PB severity or recovery time.

2021 ◽  
Vol 22 (15) ◽  
pp. 7847
Author(s):  
Anthony Fringuello ◽  
Philip D. Tatman ◽  
Tadeusz Wroblewski ◽  
John A. Thompson ◽  
Xiaoli Yu ◽  
...  

Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.


Author(s):  
Alison Pienciak-Siewert ◽  
Alaa A Ahmed

How does the brain coordinate concurrent adaptation of arm movements and standing posture? From previous studies, the postural control system can use information about previously adapted arm movement dynamics to plan appropriate postural control; however, it is unclear whether postural control can be adapted and controlled independently of arm control. The present study addresses that question. Subjects practiced planar reaching movements while standing and grasping the handle of a robotic arm, which generated a force field to create novel perturbations. Subjects were divided into two groups, for which perturbations were introduced in either an abrupt or gradual manner. All subjects adapted to the perturbations while reaching with their dominant (right) arm, then switched to reaching with their non-dominant (left) arm. Previous studies of seated reaching movements showed that abrupt perturbation introduction led to transfer of learning between arms, but gradual introduction did not. Interestingly, in this study neither group showed evidence of transferring adapted control of arm or posture between arms. These results suggest primarily that adapted postural control cannot be transferred independently of arm control in this task paradigm. In other words, whole-body postural movement planning related to a concurrent arm task is dependent on information about arm dynamics. Finally, we found that subjects were able to adapt to the gradual perturbation while experiencing very small errors, suggesting that both error size and consistency play a role in driving motor adaptation.


2021 ◽  
Vol 22 (1) ◽  
pp. 83-86
Author(s):  
O. A. Kicherova ◽  
◽  
L. I. Reikhert ◽  
O. N. Bovt ◽  
◽  
...  

In recent years, cerebral vascular diseases have been increasingly detected in young patients. It is due not only to better physicians’ knowledge about this pathology, but also to the improvement of its diagnosis methods. Modern neuroimaging techniques allow us to clarify the nature of hemorrhage, to determine the volume and location of intracerebral hematoma, and to establish the degree of concomitant edema and dislocation of the brain. However, despite the high accuracy of the research, it is not always possible to establish the cause that led to a brain accident, which greatly affects the tactics of management and outcomes in this category of patients. A special feature of the structure of cerebrovascular diseases of young people is the high proportion of hemorrhagic stroke, the causes of which are most often arterio-venous malformations. Meanwhile, there are a number of other causes that can lead to hemorrhage into the brain substance. These include disorders of blood clotting, and various vasculitis, and exposure to toxic substances and drugs, and tumor formations (primary and secondary). All these pathological factors outline the range of diagnostic search in young patients who underwent hemorrhagic stroke. Diagnosis of these pathological conditions with the help of modern visualization techniques is considered to be easy, but this is not always the case. In this article, the authors give their own clinical observation of a hemorrhagic stroke in a young patient, which demonstrates the complexity of the diagnostic search in patients with this pathology.


1970 ◽  
Vol 17 (1) ◽  
pp. 55-56
Author(s):  
ML Rahman ◽  
ASM Shawkat Ali

A male of 20 years of age presented with features of intracranial space occupying lesion of cranium involving the brain. He came with the history of previous surgery in the head one-year back. On operation, an osteolytic growth from the skull bone invading the meninges and brain parenchyma. Who found Histopathological report revealed malignant fibrous histiocytoma.   doi: 10.3329/taj.v17i1.3492 TAJ 2004; 17(1) : 55-56


1997 ◽  
Vol 78 (2) ◽  
pp. 960-976 ◽  
Author(s):  
Fredrik Ullén ◽  
Tatiana G. Deliagina ◽  
Grigori N. Orlovsky ◽  
Sten Grillner

Ullén, Fredrik, Tatiana G. Deliagina, Grigori N. Orlovsky, and Sten Grillner. Visual pathways for postural control and negative phototaxis in lamprey. J. Neurophysiol. 78: 960–976, 1997. The functional roles of the major visuo-motor pathways were studied in lamprey. Responses to eye illumination were video-recorded in intact and chronically lesioned animals. Postural deficits during spontaneous swimming were analyzed to elucidate the roles of the lesioned structures for steering and postural control. Eye illumination in intact lampreys evoked the dorsal light response, that is, a roll tilt toward the light, and negative phototaxis, that is a lateral turn away from light, and locomotion. Complete tectum-ablation enhanced both responses. During swimming, a tendency for roll tilts and episodes of vertical upward swimming were seen. The neuronal circuitries for dorsal light response and negative phototaxis are thus essentially extratectal. Responses to eye illumination were abolished by contralateral pretectum-ablation but normal after the corresponding lesion on the ipsilateral side. Contralateral pretectum thus plays an important role for dorsal light response and negative phototaxis. To determine the roles of pretectal efferent pathways for the responses, animals with a midmesencephalichemisection were tested. Noncrossed pretecto-reticular fibers from the ipsilateral pretectum and crossed fibers from the contralateral side were transected. Eye illumination on the lesioned side evoked negative phototaxis but no dorsal light response. Eye illumination on the intact side evoked an enhanced dorsal light response, whereas negative phototaxis was replaced with straight locomotion or positive phototaxis. The crossed pretecto-reticular projection is thus most important for the dorsal light response, whereas the noncrossed projection presumably plays the major role for negative phototaxis. Transection of the ventral rhombencephalic commissure enhanced dorsal light response; negative phototaxis was retained with smaller turning angles than normal. Spontaneous locomotion showed episodes of backward swimming and deficient roll control (tilting tendency). Transections of different spinal pathways were performed immediately caudal to the brain stem. All spinal lesions left dorsal light response in attached state unaffected; this response presumably is mediated by the brain stem. Spinal hemisection impaired all ipsiversive yaw turns; the animals spontaneously rolled to the intact side. Bilateral transection of the lateral columns impaired all yaw turns, whereas roll control and dorsal light response were normal. After transection of the medial spinal cord, yaw turns still could be performed whereas dorsal light response was suppressed or abolished, and a roll tilting tendency during spontaneous locomotion was seen. We conclude that the contralateral optic nerve projection to the pretectal region is necessary and sufficient for negative phototaxis and dorsal light response. The crossed descending pretectal projection is most important for dorsal light response, whereas the noncrossed one is most important for negative phototaxis. In the most rostral spinal cord, fibers for lateral yaw turns travel mainly in the lateral columns, whereas fibers for roll turns travel mainly in the medial spinal cord.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marco Muccio ◽  
David Chu ◽  
Lawrence Minkoff ◽  
Neeraj Kulkarni ◽  
Brianna Damadian ◽  
...  

Abstract Background Cerebrospinal fluid (CSF) circulation between the brain and spinal canal, as part of the glymphatic system, provides homeostatic support to brain functions and waste clearance. Recently, it has been observed that CSF flow is strongly driven by cardiovascular brain pulsation, and affected by body orientation. The advancement of MRI has allowed for non-invasive examination of the CSF hydrodynamic properties. However, very few studies have addressed their relationship with body position (e.g., upright versus supine). It is important to understand how CSF hydrodynamics are altered by body position change in a single cardiac phase and how cumulative long hours staying in either upright or supine position can affect craniocervical CSF flow. Methods In this study, we investigate the changes in CSF flow at the craniocervical region with flow-sensitive MRI when subjects are moved from upright to supine position. 30 healthy volunteers were imaged in upright and supine positions using an upright MRI. The cranio-caudal and caudo-cranial CSF flow, velocity and stroke volume were measured at the C2 spinal level over one cardiac cycle using phase contrast MRI. Statistical analysis was performed to identify differences in CSF flow properties between the two positions. Results CSF stroke volume per cardiac cycle, representing CSF volume oscillating in and out of the cranium, was ~ 57.6% greater in supine (p < 0.0001), due to a ~ 83.8% increase in caudo-cranial CSF peak velocity during diastole (p < 0.0001) and extended systolic phase duration when moving from upright (0.25 ± 0.05 s) to supine (0.34 ± 0.08 s; p < 0.0001). Extrapolation to a 24 h timeframe showed significantly larger total CSF volume exchanged at C2 with 10 h spent supine versus only 5 h (p < 0.0001). Conclusions In summary, body position has significant effects on CSF flow in and out of the cranium, with more CSF oscillating in supine compared to upright position. Such difference was driven by an increased caudo-cranial diastolic CSF velocity and an increased systolic phase duration when moving from upright to supine position. Extrapolation to a 24 h timeframe suggests that more time spent in supine position increases total amount of CSF exchange, which may play a beneficial role in waste clearance in the brain.


2015 ◽  
Vol 11 (1) ◽  
pp. NP3-NP4
Author(s):  
Ana C Félix ◽  
Nádia Fernandes ◽  
Patricia Guilherme ◽  
Hipólito Nzwalo

Vestnik ◽  
2021 ◽  
pp. 29-34
Author(s):  
Д.А. Митрохин ◽  
М.М. Ибрагимов ◽  
Б.Р. Нурмухамбетова ◽  
Н.Ш. Буйракулова ◽  
В.В. Харченко ◽  
...  

Значимость биоэлектрической активности головного мозга в оценке функционального состояния нервной системы при цереброваскулярных заболеваниях широко известна. В настоящей работе показана характеристика биоэлектрической активности головного мозга у больных, перенесших острое нарушение мозгового кровообращения. В данной статье приведены данные о том, что у больных в остром и раннем восстановительном периодах церебрального инсульта биоэлектрическая активность головного мозга характеризовалась, в основном, десинхронным и дезорганизованным типами электроэнцефалограммы. Вместе с тем, отмечались, выраженная дельта и тета активность, а также единичные острые волны, спайки, преимущественно в пораженном полушарии головного мозга, реже в контралатеральном полушарии, межполушарная асимметрия, повышение мощности спектров в сторону преобладания медленных волн. Показатели индекса когерентности по всем отведениям были снижены, что свидетельствует о нарушении функциональных межполушарных взаимосвязей. Более значительное повышение индекса когерентности в дельта и тета диапазонах у пациентов, перенесших геморрагический инсульт, может указывать на более грубые межполушарные нарушения, в сравнении с ишемическим инсультом. Результаты исследования относительной спектральной плотности мощности диапазонов показали, что при геморрагическом инсульте отмечена более высокая дельта и бета активность, а также более значительное снижение мощности альфа ритма, в сравнении с ишемическим инсультом. В тоже время, отмечается повышение интегрального индекса диапазона низкочастотной медленно-волновой активности, особенно выраженное у больных с геморрагическим инсультом р<0,05. The significance of bioelectric activity of the brain in assessing the functional state of the nervous system in cerebrovascular diseases is widely known. In this paper, the characteristics of the bioelectric activity of the brain in patients with acute cerebral circulatory disorders are shown. This article presents data that in patients with acute and early recovery periods of cerebral stroke , the bioelectric activity of the brain was characterized mainly by desynchronous and disorganized types of electroencephalogram. At the, same time, pronounced delta and theta activity was noted , as well as single acute waves, spikes, mainly in the affected hemisphere of the brain, less often in the contralateral hemisphere, interhemispheric asymmetry, increased spectral power in the direction of predominance of slow waves. The coherence index values for all leads were reduced, which indicates a violation of functional interhemispheric relationships. A more significant increase in the coherence index in the delta and theta ranges in patients who have had a hemorrhagic stroke may indicate more severe interhemispheric disorders compared to ischemic stroke. The results of the study of the relative spectral power density of the ranges showed, that in hemorrhagic stroke, there was a higher delta and beta activity, as well as a more significant decrease in the power of the alpha rhythm, in comparison with ischemic stroke. At the same time, there is an increase in the integral index of the range of low-frequency slow-wave activity, especially pronounced in patients with hemorrhagic stroke p < 0.05.


2019 ◽  
Vol 34 (9) ◽  
pp. 517-529 ◽  
Author(s):  
Ramana Appireddy ◽  
Manish Ranjan ◽  
Bryce A. Durafourt ◽  
Jay Riva-Cambrin ◽  
Walter J. Hader ◽  
...  

Moyamoya disease is a chronic progressive cerebrovascular occlusive disease of the terminal portion of the internal carotid arteries associated with an acquired abnormal vascular network at the base of the brain, often leading to ischemic or hemorrhagic stroke. Moyamoya disease is a relatively common cause of pediatric stroke with a specific racial and well-identified clinical and imaging phenotype. Moyamoya disease is more prevalent in East Asian countries compared with other geographic regions with a higher incidence of familial cases and clinically more aggressive form. Moyamoya disease is one of the few causes of stroke that is amenable to effective surgical revascularization treatment. There are various surgical options available for revascularization, including the direct, indirect, or combined bypass techniques, each with variable responses. However, due to the heterogeneity of the diseases, different clinical course, geographical variables associated with the disease, and availability of a wide variety of surgical revascularization procedures, optimal selection of a surgical candidate and the surgical technique becomes challenging, particularly in the pediatric population. This brief review presents pertinent literature of clinical options for the diagnosis and surgical treatment of moyamoya disease in children.


2006 ◽  
Vol 104 (5) ◽  
pp. 810-819 ◽  
Author(s):  
Mark E. Wagshul ◽  
John J. Chen ◽  
Michael R. Egnor ◽  
Erin J. McCormack ◽  
Patricia E. Roche

Object A recently developed model of communicating hydrocephalus suggests that ventricular dilation may be related to the redistribution of pulsations in the cranium from the subarachnoid spaces (SASs) into the ventricles. Based on this model, the authors have developed a method for analyzing flow pulsatility in the brain by using the ratio of aqueductal to cervical subarachnoid stroke volume and the phase of cerebrospinal fluid (CSF) flow, which is obtained at multiple locations throughout the cranium, relative to the phase of arterial flow. Methods Flow data were collected in a group of 15 healthy volunteers by using a series of images acquired with cardiac-gated, phase-contrast magnetic resonance imaging. The stroke volume ratio was 5.1 ± 1.8% (mean ± standard deviation). The phase lag in the aqueduct was −52.5 ± 16.5° and the phase lag in the prepontine cistern was −22.1 ± 8.2°. The flow phase at the level of C-2 was +5.1 ± 10.5°, which was consistent with flow synchronous with the arterial pulse. The subarachnoid phase lag ventral to the pons was shown to decrease progressively to zero at the craniocervical junction. Flow in the posterior cervical SAS preceded the anterior space flow. Conclusions Under normal conditions, pulsatile ventricular CSF flow is a small fraction of the net pulsatile CSF flow in the cranium. A thorough review of the literature supports the view that modified intracranial compliance can lead to redistribution of pulsations and increased intraventricular pulsations. The phase of CSF flow may also reflect the local and global compliance of the brain.


Sign in / Sign up

Export Citation Format

Share Document