scholarly journals Upright versus supine MRI: effects of body position on craniocervical CSF flow

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Marco Muccio ◽  
David Chu ◽  
Lawrence Minkoff ◽  
Neeraj Kulkarni ◽  
Brianna Damadian ◽  
...  

Abstract Background Cerebrospinal fluid (CSF) circulation between the brain and spinal canal, as part of the glymphatic system, provides homeostatic support to brain functions and waste clearance. Recently, it has been observed that CSF flow is strongly driven by cardiovascular brain pulsation, and affected by body orientation. The advancement of MRI has allowed for non-invasive examination of the CSF hydrodynamic properties. However, very few studies have addressed their relationship with body position (e.g., upright versus supine). It is important to understand how CSF hydrodynamics are altered by body position change in a single cardiac phase and how cumulative long hours staying in either upright or supine position can affect craniocervical CSF flow. Methods In this study, we investigate the changes in CSF flow at the craniocervical region with flow-sensitive MRI when subjects are moved from upright to supine position. 30 healthy volunteers were imaged in upright and supine positions using an upright MRI. The cranio-caudal and caudo-cranial CSF flow, velocity and stroke volume were measured at the C2 spinal level over one cardiac cycle using phase contrast MRI. Statistical analysis was performed to identify differences in CSF flow properties between the two positions. Results CSF stroke volume per cardiac cycle, representing CSF volume oscillating in and out of the cranium, was ~ 57.6% greater in supine (p < 0.0001), due to a ~ 83.8% increase in caudo-cranial CSF peak velocity during diastole (p < 0.0001) and extended systolic phase duration when moving from upright (0.25 ± 0.05 s) to supine (0.34 ± 0.08 s; p < 0.0001). Extrapolation to a 24 h timeframe showed significantly larger total CSF volume exchanged at C2 with 10 h spent supine versus only 5 h (p < 0.0001). Conclusions In summary, body position has significant effects on CSF flow in and out of the cranium, with more CSF oscillating in supine compared to upright position. Such difference was driven by an increased caudo-cranial diastolic CSF velocity and an increased systolic phase duration when moving from upright to supine position. Extrapolation to a 24 h timeframe suggests that more time spent in supine position increases total amount of CSF exchange, which may play a beneficial role in waste clearance in the brain.

1978 ◽  
Vol 45 (4) ◽  
pp. 581-589 ◽  
Author(s):  
V. P. Vellody ◽  
M. Nassery ◽  
W. S. Druz ◽  
J. T. Sharp

With a linearized respiratory magnetometer, measurements of anteroposterior and lateral diameters of both the rib cage and the abdomen were made at functional residual capacity and continuously during tidal breathing. Twenty-five subjects with normal respiratory systems were studied in the sitting, supine, lateral decubitus, and prone body positions. When subjects changed from sitting to supine position anteroposterior diameters of both rib cage and abdomen decreased while their lateral diameters increased. Both anteroposterior and lateral tidal excursions of the rib cage decreased; those of the abdomen increased. When subjects turned from supine to lateral decubitus position both anteroposterior diameters increased and the lateral diameters decreased. This was associated with an increase in both lateral excursions and a decrease in the abdominal anteroposterior excursions. Diameters and tidal excursions in the prone position resembled those in the supine position. Diameter changes could be explained by gravitational effects. Differences in tidal excursions accompanying body position change were probably related to 1) differences in the distribution of respiratory muscle force, 2) differences in the activity or mechanical advantage of various inspiratory muscles, and 3) local compliance changes in parts of the rib cage and abdomen.


2006 ◽  
Vol 104 (5) ◽  
pp. 810-819 ◽  
Author(s):  
Mark E. Wagshul ◽  
John J. Chen ◽  
Michael R. Egnor ◽  
Erin J. McCormack ◽  
Patricia E. Roche

Object A recently developed model of communicating hydrocephalus suggests that ventricular dilation may be related to the redistribution of pulsations in the cranium from the subarachnoid spaces (SASs) into the ventricles. Based on this model, the authors have developed a method for analyzing flow pulsatility in the brain by using the ratio of aqueductal to cervical subarachnoid stroke volume and the phase of cerebrospinal fluid (CSF) flow, which is obtained at multiple locations throughout the cranium, relative to the phase of arterial flow. Methods Flow data were collected in a group of 15 healthy volunteers by using a series of images acquired with cardiac-gated, phase-contrast magnetic resonance imaging. The stroke volume ratio was 5.1 ± 1.8% (mean ± standard deviation). The phase lag in the aqueduct was −52.5 ± 16.5° and the phase lag in the prepontine cistern was −22.1 ± 8.2°. The flow phase at the level of C-2 was +5.1 ± 10.5°, which was consistent with flow synchronous with the arterial pulse. The subarachnoid phase lag ventral to the pons was shown to decrease progressively to zero at the craniocervical junction. Flow in the posterior cervical SAS preceded the anterior space flow. Conclusions Under normal conditions, pulsatile ventricular CSF flow is a small fraction of the net pulsatile CSF flow in the cranium. A thorough review of the literature supports the view that modified intracranial compliance can lead to redistribution of pulsations and increased intraventricular pulsations. The phase of CSF flow may also reflect the local and global compliance of the brain.


2021 ◽  
Author(s):  
hongri zhang ◽  
Weike Duan ◽  
Xiaopan Li ◽  
Yixin Wang ◽  
Xinyu Li ◽  
...  

Abstract Background: The relationship of the area of the aqueduct on quantification of the aqueductal stroke volume (SV) and max velocity need further investigation. Our aim was to assess the influence of the area of the aqueduct on quantification of the aqueductal SV and max velocity measured with phase contrast magnetic resonance imaging (PC-MRI) within the cerebral aqueduct at the level of the intercollicular sulcus.Materials and Methods: Nine healthy volunteers (mean age 29.6 yrs) were enrolled in the study and brain MRIs were performed on a 3.0T system. Quantitative analysis of aqueductal cerebrospinal fluid (CSF) flow was performed using manual regions of interest (ROI) placement. ROIs were separately drawn for each of 12 phases of the cardiac cycle, and changes in aqueduct size during the cardiac cycle were determined. Stroke volumes were calculated uses the first and ninth aqueductal ROIs and compared to each other. Max velocities at the 12 phases were also collected, and the relationship between the area and max velocity and the impact on SV were analyzed.Results: There was variation in the size of the aqueduct during the cardiac cycle, the first area(S1)was larger than the ninth(S9). The first max velocity(Vmax1)was less than the ninth(Vmax9). Additionally, there was a significant different between the stroke volume calculated using the first aqueductal ROI (SV1) and the ninth(SV9). Conclusions: There is variation in the size of the cerebral aqueduct which is used to calculate stroke volume and other CSF flow parameters during the cardiac cycle. The maximum velocity may be inversely proportional to the area of ​​the aqueduct. In order to establish reliable reference values for CSF flow parameters in future studies, a variable ROI, to account for cardiac cycle variation, should be considered and incorporated.


1993 ◽  
Vol 34 (4) ◽  
pp. 321-328 ◽  
Author(s):  
D. Greitz ◽  
A. Franck ◽  
B. Nordell

Cerebrospinal fluid (CSF) flow was studied in 24 healthy volunteers using gated MR phase imaging. The subarachnoid space (SAS) was divided into 5 compartments depending on the magnitude of the pulsatile CSF flows: a high velocity compartment in the area of the brain stem and spinal cord, 2 slow ones at the upper and lower extremes of the SAS, and finally 2 intermediate velocity compartments in between. The main pulsatile spinal flow channel had a meandering pattern. The extraventricular CSF-circulation can be explained by pulsatile CSF flow without the necessity of assuming existence of a net flow. A successive time offset during the cardiac cycle has been found in the fronto-occipital direction of the interplay between the arterial expansion, brain expansion, volume changes of the CSF spaces and of the veins. It is proposed to name this time offset the intracranial “volume wave” (VoW).


2001 ◽  
Vol 11 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Noam Alperin ◽  
Kirti Kulkarni ◽  
Ben Roitberg ◽  
Francis Loth ◽  
Naren K. Pandian ◽  
...  

Object A pilot study was performed to assess noninvasively the change in intracranial compliance (ICC) and intracranial pressure (ICP) in patients with Chiari I malformation who undergo foramen magnum decompression. The working hypothesis was that the main effect of the decompressive surgery is a change in ICP. Noninvasive cine phase-contrast magnetic resonance (MR) imaging is a motion-sensitive dynamic MR imaging technique that allows for visualization and quantitation of tissue motion and flow. The authors' group has used dynamic phase-contrast MR imaging to visualize and quantify pulsatile blood and cerebrospinal fluid (CSF) flow in the craniospinal system. Methods A system approach has been used to characterize the hemodynamic–hydrodynamic coupling in the craniospinal system and to derive measures for ICC and ICP. Magnetic resonance imaging–based ICC and ICP values are derived from the ratio of the volume and pressure changes that occur naturally during each cardiac cycle. The authors conducted a prospective study of four patients, three of whom were studied before and after decompressive surgery; significant change in MR imaging–derived ICC and ICP values was documented in only one of the three surgically treated patients. A significant change in the dynamics of the intracranial volume change (ICVC) during the cardiac cycle, however, was observed in all three patients. In healthy individuals the ICVC waveform usually consists of the following sequence: monotonic increase in intracranial volume (ICV) during the systolic phase due to increased blood inflow, monotonic decrease in ICV caused by the onset of CSF outflow into the spinal canal, and increase in the venous outflow. A nonmonotonic decline in the ICVC waveform has been observed in all patients with headaches, and a relatively normal waveform was found in those without headaches or whose headaches were resolved or alleviated by the surgery. A “partial-valve” mechanism is proposed as an explanation for the abnormal ICVC dynamics. The monotonic decline in ICVC is interrupted by a “premature” reduction in the CSF outflow. This may be caused by a displacement of the hindbrain into the cervical spinal canal during the systolic phase. This obstructs the CSF flow at the later part of the systolic phase such that the ICV does not continue its gradual decline. Postsurgery, the ICVC waveforms presented a more normal-appearing ICVC dynamics profile. Conclusions Magnetic resonance imaging measurement of transcranial CSF and blood flow may lead to a better understanding of the pathophysiology of Chiari malformations and may prove to be an important diagnostic tool for guiding for the treatment of patients with Chiari I malformation.


2021 ◽  
Author(s):  
Yayoi Wada ◽  
Hirohiko Imai ◽  
Yuki Yamawaki ◽  
Md Sorwer Alam Parvez ◽  
Sae Matsui ◽  
...  

The vasculature system with a lymphatic function in the brain is manifested as meningeal lymphatic vessels and the glymphatic system, which drain waste products from cerebrospinal fluid (CSF) and produce interstitial fluid. Invasion of stimulated immune cells or inflammatory cytokines during the maturation is regarded as a sign of the disruption of brain functions through excessive immune stresses. However, it is unclear when the lymphatic system is functionally completed and in which parts of the organ the brain immunity is privileged (i.e., the blood-brain barrier is fully established). Here, we visualized the whole-head signal of gadolinium (Gd) contrast agents in mouse brains to investigate the CSF flow from the signals of Gd-contrast agents using magnetic resonance imaging (MRI) in the course of developmental stages. We found higher Gd-signals in the olfactory bulbs, prefrontal cortex, parietal surface regions of the neocortex along with dorsal meningeal lymphatic vessels, ventral midbrain, and a part of cerebellum, as well as in the basal brain regions, at the immature stage of postnatal (P) 4 weeks, compared to the P8-12 weeks. Our results suggest that the barrier of the vasculature system in mouse brains is still permeable until P1-month and small molecules can leak into the parenchyma.


1970 ◽  
Vol 6 (1) ◽  
Author(s):  
Muskinul Fuad

The education system in Indonesia emphasize on academic intelligence, whichincludes only two or three aspects, more than on the other aspects of intelligence. For thatreason, many children who are not good at academic intelligence, but have good potentials inother aspects of intelligence, do not develop optimally. They are often considered and labeledas "stupid children" by the existing system. This phenomenon is on the contrary to the theoryof multiple intelligences proposed by Howard Gardner, who argues that intelligence is theability to solve various problems in life and produce products or services that are useful invarious aspects of life.Human intelligence is a combination of various general and specific abilities. Thistheory is different from the concept of IQ (intelligence quotient) that involves only languageskills, mathematical, and spatial logics. According to Gardner, there are nine aspects ofintelligence and its potential indicators to be developed by each child born without a braindefect. What Gardner suggested can be considered as a starting point to a perspective thatevery child has a unique individual intelligence. Parents have to treat and educate theirchildren proportionally and equitably. This treatment will lead to a pattern of education that isfriendly to the brain and to the plurality of children’s potential.More than the above points, the notion that multiple intelligences do not just comefrom the brain needs to be followed. Humans actually have different immaterial (spiritual)aspects that do not refer to brain functions. The belief in spiritual aspects and its potentialsmeans that human beings have various capacities and they differ from physical capacities.This is what needs to be addressed from the perspective of education today. The philosophyand perspective on education of the educators, education stakeholders, and especially parents,are the first major issue to be addressed. With this step, every educational activity andcommunication within the family is expected to develop every aspect of children'sintelligence, especially the spiritual intelligence.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1311
Author(s):  
Faraz Ahmad ◽  
Ping Liu

Lead (Pb) neurotoxicity is a major concern, particularly in children. Developmental exposure to Pb can alter neurodevelopmental trajectory and has permanent neuropathological consequences, including an increased vulnerability to further stressors. Ascorbic acid is among most researched antioxidant nutrients and has a special role in maintaining redox homeostasis in physiological and physio-pathological brain states. Furthermore, because of its capacity to chelate metal ions, ascorbic acid may particularly serve as a potent therapeutic agent in Pb poisoning. The present review first discusses the major consequences of Pb exposure in children and then proceeds to present evidence from human and animal studies for ascorbic acid as an efficient ameliorative supplemental nutrient in Pb poisoning, with a particular focus on developmental Pb neurotoxicity. In doing so, it is hoped that there is a revitalization for further research on understanding the brain functions of this essential, safe, and readily available vitamin in physiological states, as well to justify and establish it as an effective neuroprotective and modulatory factor in the pathologies of the nervous system, including developmental neuropathologies.


2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Hardy Laura ◽  
Cantaut-Belarif Yasmine ◽  
Pietton Raphaël ◽  
Slimani Lotfi ◽  
Pascal-Moussellard Hugues

AbstractCerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid circulation and result in scoliosis-like deformities of the spine in juvenile zebrafish. However, these defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based on micro-computed tomography (micro-CT), which was conducted in a QUANTUM FX CALIPER, with a 59 µm-30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three-dimensional deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a right convexity, a rotational component and involving at least one dislocation. We confirm here that cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring patient’s diagnosis.


Sign in / Sign up

Export Citation Format

Share Document