scholarly journals Physiological responses of maize and cowpea to intercropping

2000 ◽  
Vol 35 (5) ◽  
pp. 915-921 ◽  
Author(s):  
JOSÉ MOACIR PINHEIRO LIMA FILHO

The effect of intercropping on plant water status, gas exchange and productivity of maize (Zea mays L.) cv. Centralmex, and cowpea (Vigna unguiculata L. (Walp)) cv. Pitiuba were evaluated under semi-arid conditions at the Embrapa-Centro de Pesquisa Agropecuária do Trópico Semi-Árido (CPATSA) at Petrolina, PE, Brazil. The treatments were: maize and cowpea as sole crops, at a population of 40,000 plants ha-1, and intercropped at a population of 20,000 plants ha-1. The results obtained in this paper appear to be related to the degree of competition experienced by the components, mainly for water and light. Maize intercropped had higher values of leaf water potential, stomatal conductance, transpiration and photosynthesis than as sole crop. Intercropped cowpea had higher values of leaf water potential but lower stomatal conductance, transpiration and photosynthesis than sole cowpea. Maize productivity increased 18% in relation to sole crop whereas a 5% decrease was observed with cowpea. Despite these facts the Land Equivalent Ratio obtained was 1.13 indicating intercropping advantage over the sole system. The higher partial Land Equivalent Ratio observed for maize suggests that this specie was the main component influencing the final productivity of the intercropping system studied.

1989 ◽  
Vol 16 (3) ◽  
pp. 241 ◽  
Author(s):  
NZ Saliendra ◽  
FC Meinzer

Stomatal conductance, leaf and soil water status, transpiration, and apparent root hydraulic conductance were measured during soil drying cycles for three sugarcane cultivars growing in containers in a greenhouse. At high soil moisture, transpiration and apparent root hydraulic conductance differed considerably among cultivars and were positively correlated, whereas leaf water potential was similar among cultivars. In drying soil, stomatal and apparent root hydraulic conductance approached zero over a narrow (0.1 MPa) range of soil water suction. Leaf water potential remained nearly constant during soil drying because the vapor phase conductance of the leaves and the apparent liquid phase conductance of the root system declined in parallel. The decline in apparent root hydraulic conductance with soil drying was manifested as a large increase in the hydrostatic pressure gradient between the soil and the root xylem. These results suggested that control of stomatal conductance in sugarcane plants exposed to drying soil was exerted primarily at the root rather than at the leaf level.


1991 ◽  
Vol 18 (6) ◽  
pp. 661 ◽  
Author(s):  
J Lloyd ◽  
T Trochoulias ◽  
R Ensbey

Diurnal patterns of stomatal conductance (gs) and leaf water potential (Ψ1) were determined for leaves on irrigated and non-irrigated 5-year-old Macadamia integrifolia trees over a 4-month period from September to December 1989. An empirical model for stomatal conductance was developed for irrigated trees using relationships to photon irradiance (I), leaf temperature (T1) and vapour mole fraction difference (D). This model accounted for 69% of the variance in gs, and was not improved by the inclusion of Ψ1 as an independent variable. Fitted parameters led to the effective prediction of gs for untried combinations of environmental variables. By using a simple expression to link leaf water potential to transpiration rate (E), the model was extended to prediction of Ψ1 from measurements of I, T1 and D. Stornatal conductances were significantly lower on non-irrigated trees after a 2-month dry period. Lower stornatal conductances were not accompanied by more negative Ψ1 indicating that soil rather than leaf water status may control gs in macadamia trees under non-irrigated conditions.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Alson Time ◽  
Edmundo Acevedo

The effect of water deficit on growth, water status and stomatal functioning of Prosopis tamarugo was investigated under controlled water conditions. The study was done at the Antumapu Experiment Station of the University of Chile. Three levels of water stress were tested: (i) well-watered (WW), (ii) medium stress intensity (low-watered (LW)) and (iii) intense stress (non-watered (NW)), with 10 replicates each level. All growth parameters evaluated, such as twig growth, specific leaf area and apical dominance index, were significantly decreased under water deficit. Tamarugo twig growth decreased along with twig water potential. The stomatal conductance and CO2 assimilation decreased significantly under the water deficit condition. Tamarugo maintained a high stomatal conductance at low leaf water potential. In addition, tamarugo reduced its leaf area as a strategy to diminish the water demand. These results suggest that, despite a significant decrease in water status, tamarugo can maintain its growth at low leaf water potential and can tolerate intense water deficit due to a partial stomatal closing strategy that allows the sustaining of CO2 assimilation in the condition of reduced water availability.


OENO One ◽  
1999 ◽  
Vol 33 (4) ◽  
pp. 149 ◽  
Author(s):  
Stefanos Koundouras ◽  
Cornelis Van Leeuwen ◽  
Gérard Seguin ◽  
Yves Glories

<p style="text-align: justify;">The influence of grapevine water status on vine physiological mecanisms and vigour, as well as on berry ripening and wine characteristics, was studied during the summer of 1997 in the Nemea vine growing area (Peloponnesus, Greece). This involved three non irrigated vineyards planted with the local variety Saint-George (Agiorgitiko). These vineyards differed by their soil texture and by the presence of a water table within reach of the roots. The soil of the plot "A", located at 350 m in altitude, contained a high amount of gravel and stones between 0 and 50 cm in depth. The subsoil contained nearly 50 p. cent of clay. The plot "L" was located on a plain at 300 m in altitude. Its soil was very loamy. The plot "N" was located on a plain at 260 m in altitude. Its soil contained a high amount of clay and loam but its main caracteristic was the presence of a permanent water table within reach of the roots. Vine water status was evaluated throughout the season by measurements of leaf water potential Ψ. Additional measurements of soil water content were executed by means of a TDR moisture probe (Time Domaine Reflectometry). Water uptake of the vines showed great differences on the three plots. On the plot A, water uptake of the vines diminished brutally from June (pre-dawn Ψ= -0,2 MPa) through September (pre-dawn Ψ= -1,0 MPa); measurements of stomatal conductance in early September showed that stomata remained practically closed throughout the day. On the plot N, water was easily available to the vines throughout the summer. Pre-dawn leaf water potential remained between 0 and -0,2 MPa from June till September. Stomatal conductance, measured in early September, was high. On L, vine water status was intermediate: pre-dawn leaf water potential declined throughout the season, but not as dramatically as on A. Stomatal conductance, measured in early September, was intermediate between N and A. Water availability had a clear effect on vegetative growth. Growth slackening occured early in the season on A and late on N. On plot A, berries were smaller and showed high sugar and anthocyanin concentration and low malic acid content. Wine from A, obtained by mini-vinification (3,5 hl), was rich in alcohol, anthocyanins and tanins. On N, berries had a low sugar and anthocyanin content. Wine from grapes grown on N was poor in alcohol and polyphenolics. Berry and wine composition was intermediate on L.</p>


1980 ◽  
Vol 16 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D. Kumar ◽  
Larry L. Tieszen

SUMMARYExperiments were carried out to relate soil moisture to leaf water potential (Ψ1), and to determine the effects of varying Ψ1, on leaf conductances and photosynthesis in coffee. Stomatal conductance was maximum at 0900 h, but plants growing in drier soil showed marked mid-day stomatal closure. After 1500 h, stomata began closing although plant water status improved. Photosynthesis in relation to changing Ψ1 appeared to exhibit roughly three different rates. At the fixed experimental temperature (25°C) low Ψ1 reduced photosynthesis throughits influence on stomata, but under field conditions low Ψ1 and an accompanying rise in temperature could lower the rate by lowering both mesophyll and stomatal conductances.


1988 ◽  
Vol 110 (2) ◽  
pp. 271-277 ◽  
Author(s):  
S. Sarig ◽  
A. Blum ◽  
Y. Okon

SummaryThe effect of inoculation withAzospirillum brasilenseon growth, water status and yield of dryland sorghum (cv. RS 610 and cv. H-226) growing on stored soil moisture was examined in three field experiments conducted during the years 1983–5.Plants were sampled at regular intervals, and the following characteristics were measured: dry-matter accumulation, leaf area, grain yield, percentage nitrogen and phosphorus in leaves, leaf water potential, canopy temperature, transpiration, stomatal conductance and soil water depletion.Inoculation led to an average increase of 19% in total stover dry-matter yield, as a result of higher rates of dry-matter accumulation during the early stages of growth.Azospirilluminoculation caused a 15–18% increase in grain yield in all three experiments. This increase was associated with a greater number of seeds per panicle.The water regime of sorghum plants was improved by inoculation, as seen in their higher leaf water potential, lower canopy temperatures and greater stomatal conductance and transpiration. Total extraction of soil moisture by inoculated plants was greater (by about 15%) and occurred from deeper soil layers, compared with non-inoculated controls.These findings indicate that inoculation withAzospirillumcan lead to yield increases in dryland grain sorghum, primarily through improved utilization of soil moisture.


2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


2021 ◽  
Author(s):  
Fabian Wankmüller ◽  
Mohsen Zarebanadkouki ◽  
Andrea Carminati

&lt;p&gt;Predicting plant responses to drought is a long-standing research goal. Since stomata regulate gas-exchange between plants and the atmosphere, understanding their response to drought is fundamental. Current predictions of stomatal behavior during drought mainly rely on empirical models. These models may suit well to a specific set of plant traits and environmental growth conditions, but their predictive value is doubtful when atmospheric and soil conditions change. Stomatal optimization offers an alternative framework to predict stomatal regulation in response to drought for varying environmental conditions and plant traits. Models which apply this optimization principle posit that stomata maximize the carbon gain in relation to a penalty caused by water loss, such as xylem cavitation. Optimization models have the advantage of requiring a limited number of parameters and have been successfully used to predict stomatal response to drought for varying environmental conditions and species. However, a mechanism that enables stomata to optimally close in response to water limitations, and more precisely to a drop in the ability of the soil-plant continuum to sustain the transpiration demand, is not known. Here, we propose a model of stomatal regulation that is linked to abscisic acid (ABA) dynamics (production, degradation and transport) and that allows plants to avoid excessive drops in leaf water potential during soil drying and increasing vapor pressure deficit (VPD). The model assumes that: 1) stomatal conductance (g&lt;sub&gt;s&lt;/sub&gt;) decreases when ABA concentration close to the guard cells (C&lt;sub&gt;ABA&lt;/sub&gt;) increases; 2) C&lt;sub&gt;ABA&lt;/sub&gt; increases with decreasing leaf water potential (due to higher production); and 3) C&lt;sub&gt;ABA&lt;/sub&gt; decreases with increasing photosynthesis (e.g. due to faster degradation or transport to the phloem). Our model includes simulations of leaf water potential based on transpiration rate, soil water potential and variable hydraulic conductances of key elements (rhizosphere, root and xylem), and a function linking stomatal conductance to assimilation. It was tested for different soil properties and VPD. The model predicts that stomata close when the relation between assimilation and leaf water potential becomes nonlinear. In wet soil conditions and low VPD, when there is no water limitation, this nonlinearity is controlled by the relation between stomatal conductance and assimilation. In dry soil conditions, when the soil hydraulic conductivity limits the water supply, nonlinearity is controlled by the excessive drop of leaf water potential for increasing transpiration rates. The model predicts different relations between stomatal conductance and leaf water potential for varying soil properties and VPD. For instance, the closure of stomata is more abrupt in sandy soil, reflecting the steep decrease in hydraulic conductivity of sandy soils. In summary, our model results in an optimal behavior, in which stomatal closure avoids excessive (nonlinear) decrease in leaf water potential, similar to other stomatal optimization models. As based on ABA concentration which increases with decreasing leaf water potential but declines with assimilation, this model is a preliminary attempt to link optimization models to a physiological mechanism.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document