scholarly journals Blood-gas and electrolyte values for Amazon parrots (Amazona aestiva)

2008 ◽  
Vol 28 (2) ◽  
pp. 108-112 ◽  
Author(s):  
Valéria V. Paula ◽  
Denise T. Fantoni ◽  
Denise A. Otsuki ◽  
José O.C. Auler Jr

The aim was to provide reference data for blood gas/acid-base status and electrolytes for non-anesthetized Amazon parrots (Amazona aestiva). Thirty-five adult parrots from Tietê ecologic park were utilized. Arterial blood (0.3ml) samples were anaerobically collected from the superficial ulnar artery in heparinized (sodium heparin) 1-ml plastic syringes. The samples were immediately analyzed through a portable analyzer (i-STAT*, Abbot, Illinois, USA) with cartridges (EG7+). These data were grouped in such a way as to present both mean and standard deviation: body weight (360±37g), respiratory rate (82±33 b/m), temperature (41.8±0.6°C), hydrogen potential (7.452±0.048), carbon dioxide partial pressure (22.1±4.0mmHg), oxygen partial pressure (98.1±7.6mmHg), base excess (-7.9±3.1), plasma concentration of bicarbonate ions (14.8±2.8mmol/L), oxygen saturation (96.2±1.1%), plasma concentration of sodium (147.4±2.2mmol/L), plasma concentration of potassium (3.5±0.53mmol/L), plasma concentration of calcium (0.8±0.28mmol/L), hematocrit (38.7±6.2%) and concentration of hemoglobin (13.2±2.1g/dl). This study led us to conclude that, although the results obtained showed hypocapnia and low values of bicarbonate and base excess, when compared to other avian species, these data are very similar. Besides, in spite of the equipment being approved only for human beings, it was considered simple and very useful in the analysis of avian blood samples. By using this equipment we were able to provide references data for non-anaesthetized Amazon parrots.

2019 ◽  
pp. 203-206
Author(s):  
Mevlut Demir ◽  
◽  
Muslum Sahin ◽  
Ahmet Korkmaz ◽  
◽  
...  

Carbon monoxide intoxication occurs usually via inhalation of carbon monoxide that is emitted as a result of a fire, furnace, space heater, generator, motor vehicle. A 37-year-old male patient was admitted to the emergency department at about 5:00 a.m., with complaints of nausea, vomiting and headache. He was accompanied by his wife and children. His venous blood gas measures were: pH was 7.29, partial pressure of carbon dioxide (pCO2) was 42 mmHg, partial pressure of oxygen (pO2) was 28 mmHg, carboxyhemoglobin (COHb) was 12.7% (reference interval: 0.5%-2.5%) and oxygen saturation was 52.4%. Electrocardiogram (ECG) examination showed that the patient was not in sinus rhythm but had atrial fibrillation. After three hours the laboratory examination was repeated: Troponin was 1.2 pg/ml and in the arterial blood gas COHb was 3%. The examination of the findings on the monitor showed that the sinus rhythm was re-established. The repeated ECG examination confirmed the conversion to the sinus rhythm. He was monitored with the normobaric oxygen administration.


2021 ◽  
Vol 11 (3) ◽  
pp. 517-521
Author(s):  
Alejandro Montero-Salinas ◽  
Marta Pérez-Ramos ◽  
Fernando Toba-Alonso ◽  
Leticia Quintana-DelRío ◽  
Jorge Suanzes-Hernández ◽  
...  

Aim. To evaluate the influence of time on arterial blood gas values after artery puncture is performed. Method. Prospective longitudinal observational study carried out with gasometric samples from 86 patients, taken at different time intervals (0 (T0), 15 (T15), 30 (T30) and 60 (T60) min), from 21 October 2019 to 21 October 2020. The study variables were: partial pressure of carbon dioxide, bicarbonate, hematocrit, hemoglobin, potassium, lactic acid, pH, partial pressure of oxygen, saturation of oxygen, sodium and glucose. Results. The initial sample consisted of a total of 90 patients. Out of all the participants, four were discarded as they did not understand the purpose of the study; therefore, the total number of participants was 86, 51% of whom were men aged 72.59 on average (SD: 16.23). In the intra-group analysis, differences in PCO2, HCO3, hematocrit, Hb, K+ and and lactic acid were observed between the initial time of the test and the 15, 30 and 60 min intervals. In addition, changes in pH, pO2, SO2, Na and glucose were noted 30 min after the initial sample had been taken. Conclusions. The variation in the values, despite being significant, has no clinical relevance. Consequently, the recommendation continues to be the analysis of the GSA at the earliest point to ensure the highest reliability of the data and to provide the patient with the most appropriate treatment based on those results.


Author(s):  
Kirsty L. Ress ◽  
Gus Koerbin ◽  
Ling Li ◽  
Douglas Chesher ◽  
Phillip Bwititi ◽  
...  

AbstractObjectivesVenous blood gas (VBG) analysis is becoming a popular alternative to arterial blood gas (ABG) analysis due to reduced risk of complications at phlebotomy and ease of draw. In lack of published data, this study aimed to establish reference intervals (RI) for correct interpretation of VBG results.MethodsOne hundred and 51 adult volunteers (101 females, 50 males 18–70 y), were enrolled after completion of a health questionnaire. Venous blood was drawn into safePICO syringes and analysed on ABL827 blood gas analyser (Radiometer Pacific Pty. Ltd.). A non-parametric approach was used to directly establish the VBG RI which was compared to a calculated VBG RI based on a meta-analysis of differences between ABG and VBGResultsAfter exclusions, 134 results were used to derive VBG RI: pH 7.30–7.43, partial pressure of carbon dioxide (pCO2) 38–58 mmHg, partial pressure of oxygen (pO2) 19–65 mmHg, bicarbonate (HCO3−) 22–30 mmol/L, sodium 135–143 mmol/L, potassium 3.6–4.5 mmol/L, chloride 101–110 mmol/L, ionised calcium 1.14–1.29 mmol/L, lactate 0.4–2.2 mmol/L, base excess (BE) −1.9–4.5 mmol/L, saturated oxygen (sO2) 23–93%, carboxyhaemoglobin 0.4–1.4% and methaemoglobin 0.3–0.9%. The meta-analysis revealed differences between ABG and VBG for pH, HCO3−, pCO2 and pO2 of 0.032, −1.0 mmol/L, −4.2 and 39.9 mmHg, respectively. Using this data along with established ABG RI, calculated VBG RI of pH 7.32–7.42, HCO3− 23 – 27 mmol/L, pCO2 36–49 mmHg (Female), pCO2 39–52 mmHg (Male) and pO2 43–68 mmHg were formulated and compared to the VBG RI of this study.ConclusionsAn adult reference interval has been established to assist interpretation of VBG results.


2007 ◽  
Vol 47 (1) ◽  
pp. 35
Author(s):  
Hari Kushartono ◽  
Antonius H. Pudjiadi ◽  
Susetyo Harry Purwanto ◽  
Imral Chair ◽  
Darlan Darwis ◽  
...  

Background Base excess is a single variable used to quantifymetabolic component of acid base status. Several researches havecombined the traditional base excess method with the Stewartmethod for acid base physiology called as Fencl-Stewart method.Objective The purpose of the study was to compare two differentmethods in identifying hyperlactacemia in pediatric patients withcritical illness.Methods The study was performed on 43 patients admitted tothe pediatric intensive care unit of Cipto MangunkusumoHospital, Jakarta. Sodium, potassium, chloride, albumin, lactateand arterial blood gases were measured. All samples were takenfrom artery of all patients. Lactate level of >2 mEq/L was definedas abnormal. Standard base excess (SBE) was calculated fromthe standard bicarbonate derived from Henderson-Hasselbalchequation and reported on the blood gas analyzer. Base excessunmeasured anions (BE UA ) was calculated using the Fencl-Stewartmethod simplified by Story (2003). Correlation between lactatelevels in traditional and Fencl-Stewart methods were measuredby Pearson’s correlation coefficient .Results Elevated lactate levels were found in 24 (55.8%) patients.Lactate levels was more strongly correlated with BE UA (r = - 0.742,P<0.01) than with SBE (r = - 0.516, P<0.01).Conclusion Fencl-Stewart method is better than traditionalmethod in identifying patients with elevated lactate levels, so theFencl-Stewart method is suggested to use in clinical practice.


Author(s):  
Nazlıhan Boyacı ◽  
Sariyya Mammadova ◽  
Nurgül Naurizbay ◽  
Merve Güleryüz ◽  
Kamil İnci ◽  
...  

Background: Transcutaneous partial pressure of carbon dioxide (PtCO2) monitorization provides a continuous and non-invasive measurement of partial pressure of carbon dioxide (pCO2). In addition, peripheral oxygen saturation (SpO2) can also be measured and followed by this method. However, data regarding the correlation between PtCO2 and arterial pCO2 (PaCO2) measurements acquired from peripheric arterial blood gas is controversial. Objective: We aimed to determine the reliability of PtCO2 with PaCO2 based on its advantages, like non-invasiveness and continuous applicability. Methods: Thirty-five adult patients with hypercapnic respiratory failure admitted to our tertiary medical intensive care unit (ICU) were included. Then we compared PtCO2 and PaCO2 and both SpO2 measurements simultaneously. Thirty measurements from the deltoid zone and 26 measurements from the cheek zone were applied. Results: PtCO2 could not be measured from the deltoid region in 5 (14%) patients. SpO2 and pulse rate could not be detected at 8 (26.7%) of the deltoid zone measurements. Correlation coefficients between PtCO2 and PaCO2 from deltoid and the cheek region were r: 0,915 and r: 0,946 (p = 0,0001). In comparison with the Bland-Altman test, difference in deltoid measurements was -1,38 ± 1,18 mmHg (p = 0.252) and in cheek measurements it was -5,12 ± 0,92 mmHg (p = 0,0001). There was no statistically significant difference between SpO2 measurements in each region. Conclusion: Our results suggest that PtCO2 and SpO2 measurements from the deltoid region are reliable compared to the arterial blood gas analysis in hypercapnic ICU patients. More randomized controlled studies investigating the effects of different measurement areas, hemodynamic parameters, and hemoglobin levels are needed.


1974 ◽  
Vol 60 (3) ◽  
pp. 901-908
Author(s):  
M. G. EMíLIO

1. The respiratory exchanges through the lungs and skin of frogs and the time courses of blood gas concentrations were studied during emergence and diving periods. 2. Most of the total oxygen uptake is carried out through the lungs. The partial pressure of oxygen in arterial blood falls to very low levels a few minutes after diving, showing that the cutaneous respiratory surface cannot compensate for the lack of lung respiration. 3. Most of the metabolic carbon dioxide is disposed of through the skin. Although the skin output is maintained through diving periods, there is an important rise in the partial pressure of carbon dioxide in blood following submergence. However, the total concentration of CO2 in the blood decreases, as does the blood pH value. 4. This phenomenon is probably the result of a metabolic acidosis due to the switching on of anaerobic processes during diving periods.


2009 ◽  
Vol 28 (10) ◽  
pp. 665-670 ◽  
Author(s):  
Nastaran Eizadi-Mood ◽  
Sam Alfred ◽  
Ahmad Yaraghi ◽  
Chanh Huynh ◽  
Ali Shayesteh Moghadam

The aim of this study was to compare simultaneously obtained arterial and capillary blood gas (CBG) values in comatose-poisoned patients presented with stable vital signs. Forty-five adult patients with a diagnosis of coma because of poisoning and stable vital signs were included in this prospective study. With respect to pH, the arterial blood gas (ABG) and CBG values correlated satisfactorily (r2 = .91) and had an acceptable limit of agreements (LOAs; —0.04 to 0.06). With respect to base excess (BE), the ABG and CBG values correlated well (r2 = .85), but their 95% LOAs seem too wide to allow substitution (—4.4 to 2.7). PCO2 (r2 = .61), HCO3 (r2 = .71) and PO2 (r2 = .53) correlated less reliably. A capillary PCO2 of 51.7 mm Hg had a sensitivity of 100% and a specificity of 95.12% for detecting hypercarbia (area under the curve, 0.99; 95% Confidence Interval, 0.90-0.99; p < .0001). In conclusion, CBG analysis for pH may be a reliable substitute for ABG analysis in the initial evaluation of patients presenting with coma and stable vital signs to the poisoning emergency department (PED). Subsequent ABG may be required in patients with capillary PCO2 > 51.7 mm Hg.


2018 ◽  
Vol 52 (5) ◽  
pp. 497-503
Author(s):  
Gabrielle C Musk ◽  
Matthew W Kemp

Short-term anaesthesia of the pregnant ewe may be required for caesarean delivery of a preterm foetus within a research protocol. The aim of this study was to evaluate and compare the acid-base and haematological status of the ewe and foetus at the time of surgical delivery by collecting maternal and foetal arterial blood samples. Fifteen date-mated singleton-pregnant merino cross ewes at 122.0 (±0.5) days of gestation were anaesthetised with a combination of midazolam (0.5 mg/kg) and ketamine (10 mg/kg) by intravenous injection. A subarachnoid injection of lidocaine (60 mg) was given to desensitise the caudal abdomen. Supplemental oxygen was not provided, and an endotracheal tube was not placed in the ewe’s trachea. The development of maternal respiratory acidosis (hypercapnia) and hypoxaemia was anticipated. Samples of arterial blood for blood gas analyses were collected simultaneously from the radial artery of the ewe and the umbilical artery of the foetus immediately after delivery. The results from the maternal blood samples were within the normal range for pH, partial pressure of carbon dioxide in arterial blood (PaCO2), base excess, glucose, lactate, haematocrit and haemoglobin concentration. The maternal partial pressure of oxygen in arterial blood (PaO2) revealed hypoxaemia: 45.2 (41.1–53.4) mmHg. Foetal arterial blood gas analysis revealed hypoxaemia (15.0 ± 3.1 mmHg) and hypoglycaemia (0.1 (0.1–1.1) mmol/L). The benefit of providing supplemental oxygen and/or placing an endotracheal tube must be carefully weighed against the benefit of saving time when prompt delivery of the foetus is planned. In this study the pregnant ewe developed severe hypoxaemia, and this abnormality may have contributed to a low foetal PaO2.


2000 ◽  
Vol 279 (2) ◽  
pp. R617-R628 ◽  
Author(s):  
Carlos E. Crocker ◽  
Anthony P. Farrell ◽  
A. Kurt Gamperl ◽  
Joseph J. Cech

Cardioventilatory variables and blood-gas, acid-base status were measured in cannulated white sturgeon ( Acipenser transmontanus) maintained at 19°C during normocapnic and hypercapnic (PwCO2 ∼20 Torr) water conditions and after the injection of adrenergic analogs. Hypercapnia produced significant increases in arterial Pco 2, ventilatory frequency, and plasma concentration of cortisol and epinephrine, and it produced significant decreases in arterial pH and plasma concentration of glucose but no change in arterial Po 2, hematocrit, and concentration of lactate or norepinephrine. Hypercapnia significantly increased cardiac output (Q) by 22%, mean arterial pressure (MAP) by 8%, and heart rate (HR) by 8%. However, gut blood flow (GBF) remained constant. In normocapnic fish, phenylephrine significantly constricted the splanchnic circulation, whereas isoproterenol significantly increased Q and produced a systemic vasodilation. During hypercapnia, propranolol significantly decreased Q, GBF, MAP, and HR, whereas phentolamine significantly decreased MAP and increased GBF. These changes suggest that cardiovascular function in the white sturgeon is sensitive to both α- and β-adrenergic modulation. We found microspheres to be unreliable in predicting GBF on the basis of our comparisons with simultaneous direct measurements of GBF. Overall, our results demonstrate that environmental hypercapnia (e.g., as is experienced in high-intensity culture situations) elicits stress responses in white sturgeon that significantly elevate steady-state cardiovascular and ventilatory activity levels.


Sign in / Sign up

Export Citation Format

Share Document