scholarly journals Phylogenetic characterization of serum plus antibiotic-resistant extraintestinal Escherichia coli obtained from the liver of poultry carcasses in Pernambuco

2017 ◽  
Vol 37 (10) ◽  
pp. 1069-1073 ◽  
Author(s):  
Renata V. Vaz ◽  
Gisele V. Gouveia ◽  
Nelito M.J. Andrade ◽  
Mateus M. da Costa ◽  
Jose V. Lima-Filho

ABSTRACT: In this study, avian extraintestinal Escherichia coli obtained from the liver of poultry carcasses approved for human consumption in the State of Pernambuco-Brazil were tested for antibiotic plus serum-resistance. Liver samples (n=110) were obtained from one slaughterhouse and 88 bacterial isolates were identified as Escherichia coli. The antibiotic-resistance profiles of antibiotics used in human and/or veterinary practice were accessed by the disk-diffusion method. Phenotypes with high resistance to streptomycin (84.0%), tetracycline (44.7%), amikacin (29.8%), gentamicin (21.3%) and ciprofloxacin (21.3%) were identified. Resistance to antibiotics such as ceftazidime, amoxicillin-clavulanic acid and imipenem was also recorded. Twenty isolates with distinct antibiotic-resistance and susceptibility profiles were selected for serum resistance assays, phylogenetic characterization and detection of the iss gene. We have shown that multidrug resistant isolates were often simultaneously resistant to broiler and human sera. Phylogenetic characterization of serum- plus antibiotic-resistant isolates have shown three belonging to group D, eleven to group B1, one to group B2, and five to group A. We concluded that commensal E. coli strains isolated from the liver of healthy poultry carcasses can harbor and potentially share multidrug- plus virulence genes found in pathogenic pathotypes. This suspicion was not related to specific phylogenetic groups or presence of the iss gene.

2021 ◽  
Author(s):  
Mohammed Allami ◽  
Masoumeh Bahreini ◽  
Mohammad Reza Sharifmoghadam

Abstract Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR technique was used to evaluate the phylogenetic groups and the presence of six virulence factor genes; type 1 fimbria (fimH), A-fimbrial adhesion (afa), hemolysin (hly), fimbrial adhesins P (papC), cytotoxic necrosis factor 1 (cnf1), and aerobactin (aer). The majority of isolates belonged to the phylogenetic groups of B2 (55%) and D (32%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.


2020 ◽  
Vol 13 (6) ◽  
pp. 1037-1044
Author(s):  
Mona A. A. AbdelRahman ◽  
Heba Roshdy ◽  
Abdelhafez H. Samir ◽  
Engy A. Hamed

Aim: Antimicrobial resistance is a global health threat. This study investigated the prevalence of Escherichia coli in imported 1-day-old chicks, ducklings, and turkey poults. Materials and Methods: The liver, heart, lungs, and yolk sacs of 148 imported batches of 1-day-old flocks (chicks, 45; ducklings, 63; and turkey poults, 40) were bacteriologically examined for the presence of E. coli. Results: We isolated 38 E. coli strains from 13.5%, 6.7%, and 5.4% of imported batches of 1-day-old chicks, ducklings, and turkey poults, respectively. They were serotyped as O91, O125, O145, O78, O44, O36, O169, O124, O15, O26, and untyped in the imported chicks; O91, O119, O145, O15, O169, and untyped in the imported ducklings; and O78, O28, O29, O168, O125, O158, and O115 in the imported turkey poults. The E. coli isolates were investigated for antibiotic resistance against 16 antibiotics using the disk diffusion method and were found resistant to cefotaxime (60.5%), nalidixic acid (44.7%), tetracycline (44.7%), and trimethoprim-sulfamethoxazole (42.1%). The distribution of extended-spectrum β-lactamase (ESBL) and ampC β-lactamase genes was blaTEM (52.6%), blaSHV (28.9%), blaCTX-M (39.5%), blaOXA-1 (13.1%), and ampC (28.9%). Conclusion: Imported 1-day-old poultry flocks may be a potential source for the dissemination of antibiotic-resistant E. coli and the ESBL genes in poultry production.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


2013 ◽  
Vol 295-298 ◽  
pp. 630-634 ◽  
Author(s):  
Ni Ni Han ◽  
Song He Zhang ◽  
Pei Fang Wang ◽  
Chao Wang

The aims of this study are to evaluate multiple antibiotic resistant Escherichia coli isolated from surface water and to investigate the presence and distribution antibiotic resistance genes (ARGs) in sediments of Taihu Lake. The results show that the presentence of four ARGs concentrations in the sediments of the lake was in sequence: strB>qnrB>strA>qnrS, as determined by realtime-PCR technique. The southwest and east areas of Taihu Lake were polluted seriously than other areas from all kinds of antibiotics. The screening Escherichia coli had a higher resistance to streptomycin, tetracycline and ampicillin than other four antibiotics, and had a lowest resistance to levofloxacin.


2021 ◽  
Vol 24 (1) ◽  
pp. 32-42
Author(s):  
M. Jajarmi ◽  
M. Askari Badouei ◽  
R. Ghanbarpour ◽  
A. Karmostaji ◽  
H. Alizade

Foodborne transmission of Shiga toxin-producing Escherichia coli (STEC) poses a threat to public health. The Clermont typing schemes (previous and revised) have been used widely to phylotype E. coli. The present study was conducted to compare the relationship of the Clermont phylogenet-ic schemes in STEC strains isolated from goats and antibiotic resistance patterns in the southeast of Iran. Overall 52 strains carrying the stx gene were used for subsequent analysis. All strains were determined by analysing the genomic DNA with a PCR-based method using the two Clermont et al. (2000, 2013) schemes. Extended spectrum beta-lactamase (ESBL) producing strains were con-firmed by the double disk-diffusion method. STEC strains were also tested for susceptibility to 20 antimicrobials agents. In the original Clermont method, the prevalent phylogroups were B1 (69.2%) and A (28.8%). The significant phylogenetic groups of strains according to the revised Clermont method were B1 (82.7%), A (13.5%) and unknown (3.8%). However, STEC strains underwent changes as noted from A to B1 (17.3%), B1 to unknown (3.8%), B1 to A (1.9%) and D to B1 (1.9%) groupings. Of the 52 stx-positive strains, two ESBL producing strains were detected. Susceptibility data showed that the most frequent resistance phenotype was related to cefazolin (90.4%), streptomycin (88.5%), ampicillin (86.5%) and oxytetracycline (82.7%) respectively. Alt-hough the overall frequency of the reassigned phylotypes was not significant, most changes oc-curred within the A phylotype. Therefore, implementation of the new method on isolates belong-ing to the A phylotype in the old method seems to be necessary to obtain accurate results.


2017 ◽  
Vol 11 (01) ◽  
pp. 51-57 ◽  
Author(s):  
Yandag Munkhdelger ◽  
Nyamaa Gunregjav ◽  
Altantsetseg Dorjpurev ◽  
Nishi Juniichiro ◽  
Jav Sarantuya

Introduction: The severity of urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) is due to the expression of a wide spectrum of virulence genes. E. coli strains were divided into four phylogenetic groups (A, B1, B2 and D) based on their virulence genes. The present study aimed to assess the relationship between virulence genes, phylogenetic groups, and antibiotic resistance of UPEC. Methodology: A total of 148 E. coli were tested for antimicrobial resistance against 10 drugs using the disk diffusion method. The isolates were screened by polymerase chain reaction (PCR) for detection of virulence genes and categorized into the four major phylogenetic groups. Results: Phylogenetic group B2 was predominant (33.8%), followed by D (28.4%), A (19.6), and B1 (18.2%). A higher prevalence of fimH (89.9%), fyuA (70.3%), traT (66.2%), iutA (62.2%), kpsMTII (58.8%), and aer (56.1%) genes were found in UPEC, indicating a putative role of adhesins, iron acquisition systems, and protectins that are main cause of UTIs. The most common antibiotic resistance was to cephalotin (85.1%), ampicillin (78.4%) and the least to nitrofurantoin (5.4%) and imipenem (2%). In total, 93.9% of isolates were multidrug resistant (MDR). Conclusions: This study showed that group B2 and D were the predominant phylogenetic groups and virulence-associated genes were mostly distributed in these groups. The virulence genes encoding components of adhesins, iron acquisition systems, and protectins were highly prevalent among antibiotic-resistant UPEC. Although the majority of strains are MDR, nitrofurantoin is the drug of choice for treatment of UTI patients in Ulaanbaatar.


2011 ◽  
Vol 5 (12) ◽  
pp. 840-849 ◽  
Author(s):  
José Molina-López ◽  
Gerardo Aparicio-Ozores ◽  
Rosa María Ribas-Aparicio ◽  
Sandra Gavilanes-Parra ◽  
María Elena Chávez-Berrocal ◽  
...  

Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.


2020 ◽  
Vol 19 (2) ◽  
pp. 269-276
Author(s):  
Kulchai Nakbubpa ◽  
◽  
Kunyavee phattanakitjumroon ◽  
Thitichaya Chukiatsiri ◽  
Krittamet Rommaneeyachitto ◽  
...  

Klebsiella pneumoniae is commonly found in environments, causing secondary infections in both human and animals, as well as antibiotic resistance problem. The objective of this study was to determine the prevalence of K. pneumoniae contaminated in the environments of surgical practice and laboratory dog husbandry rooms at Animal hospital, Rajamangala University of Technology Tawan-ok during 2019 - 2020. Two-hundred-swabbed samples were collected from these nearby environments and laboratory dogs themselves. Then, all samples were tested for K. pneumoniae and antibiotic susceptibility using disk diffusion method. From the results, the total prevalence was 3.5% and the high frequencies were found in three categories: laboratory dogs (35.7%), veterinarian belongings (3.3%) and building structure (2.5%). The antibiotic resistance was also detected including Cephalexin, Ceftazidime and Penicillin G (100%), Gentamicin and Colistin (85.71%), Amikacin (42.86%), and Ciprofloxacin (14.29%). Owning to the fact that laboratory dogs exposed to an external environment leading to bacterial contamination into themself and the husbandry room. Therefore, the hygiene of laboratory dogs and area in husbandry room should be primarily considered. Our study would be the preliminary baseline for the study of antibiotic resistant K. pneumoniae contamination in dogs, human, and their environments.


Sign in / Sign up

Export Citation Format

Share Document