scholarly journals Characteristics of a tractor engine using mineral and biodiesel fuels blended with rapeseed oil

2010 ◽  
Vol 67 (5) ◽  
pp. 510-516 ◽  
Author(s):  
Tone Godeša ◽  
Viktor Jejčič ◽  
Tomaž Poje

One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus) oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel), rapeseed oil methyl ester - biodiesel (B100) and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO). Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50%) gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.

Author(s):  
Jakub Čedík ◽  
Martin Pexa ◽  
Bohuslav Peterka ◽  
Miroslav Müller ◽  
Michal Holubek ◽  
...  

Liquid biofuels for compression ignition engines are often based on vegetable oils. In order to be used in compression ignition engine the vegetable oils have to be processed because of their high viscosity or it is also possible to use vegetable oils in fuel blends. In order to decrease the viscosity of the fuel blends containing crude vegetable oil the alcohol-based fuel admixtures can be used. The paper describes the effect of rapeseed oil–diesel fuel–n-butanol blends on combustion characteristics and solid particles production of turbocharged compression ignition engine. The 10% and 20% concentrations of n-butanol in the fuel blend were measured and analysed. The engine Zetor 1204, located in tractor Zetor Forterra 8641 with the power of 60kW and direct injection was used for the measurement. The engine was loaded through power take off shaft of the tractor using mobile dynamometer MAHA ZW500. The measurement was carried out in stabilized conditions at 20%, 60% and 100% engine load. The engine speed was kept at 1950 rpm. Tested fuel blends showed lower production of solid particles than diesel fuel and lower peak cylinder pressure and with increasing concentration of n-butanol in the fuel blend the ignition delay was prolonged and premixed phase of combustion was increased.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2978 ◽  
Author(s):  
Alfredas Rimkus ◽  
Justas Žaglinskis ◽  
Saulius Stravinskas ◽  
Paulius Rapalis ◽  
Jonas Matijošius ◽  
...  

This article presents our research results on the physical-chemical and direct injection diesel engine performance parameters when fueled by pure diesel fuel and retail hydrotreated vegetable oil (HVO). This fuel is called NexBTL by NESTE, and this renewable fuel blends with a diesel fuel known as Pro Diesel. A wide range of pure diesel fuel and NexBTL100 blends have been tested and analyzed: pure diesel fuel, pure NexBTL, NexBTL10, NexBTL20, NexBTL30, NexBTL40, NexBTL50, NexBTL70 and NexBTL85. The energy, pollution and in-cylinder parameters were analyzed under medium engine speed (n = 2000 and n = 2500 rpm) and brake torque load regimes (30–120 Nm). AVL BOOST software was used to analyze the heat release characteristics. The analysis of brake specific fuel consumption showed controversial results due to the lower density of NexBTL. The mass fuel consumption decreased by up to 4%, and the volumetric consumption increased by up to approximately 6%. At the same time, the brake thermal efficiency mainly increased by approximately 0.5–1.4%. CO, CO2, NOx, HC and SM were analyzed, and the change in CO was negligible when increasing NexBTL in the fuel blend. Higher SM reduction was achieved while increasing the percentage of NexBTL in the blends.


2016 ◽  
Vol 36 (1) ◽  
pp. 6-13
Author(s):  
Leonardo Frizziero ◽  
Luca Piancastelli

<p>A feasibility study for the installation of a CRDID (Common Rail Direct Injection Diesel) on a light helicopter is introduced. The total mass available for the CRDID is evaluated starting from fuel consumption and helicopter data. The conversion of an automotive unit was discarded to excessive mass and excessive costs of the conversion. A derivative of an automotive engine was then considered. This solution proved to be feasible. The installation of the new CRDID was then studied. The turbocharger and the cooling system were defined for the application. The result was the evaluation of the power plant installation mass that proved to be much lower than the maximum admissible. The installation is then possible.</p>


2011 ◽  
Vol 31 (5) ◽  
pp. 916-922 ◽  
Author(s):  
Gustavo H. Nietiedt ◽  
José F. Schlosser ◽  
Alexandre Russini ◽  
Ulisses G. Frantz ◽  
Rodrigo L. Ribas

Diesel fuel is used widely in Brazil and worldwide. On the other hand, the growing environmental awareness leads to a greater demand for renewable energy resources. Thus, this study aimed to evaluate the use of different blends of soybean (Glycine max) methyl biodiesel and diesel in an ignition compression engine with direct injection fuel. The tests were performed on an electric eddy current dynamometer, using the blends B10, B50 and B100, with 10; 50 e 100% of biodiesel, respectively, in comparison to the commercial diesel B5, with 5% of biodiesel added to the fossil diesel. The engine performance was analyzed trough the tractor power take off (PTO) for each fuel, and the best results obtained for the power and the specific fuel consumption, respectively, were: B5 (44.62 kW; 234.87 g kW-1 h-1); B10 (44.73 kW; 233.78 g kW-1 h-1); B50 (44.11 kW; 250.40 g kW-1 h-1) e B100 (43.40 kW; 263.63 g kW-1 h-1). The best performance occurred with the use of B5 and B10 fuel, without significant differences between these blends. The B100 fuel showed significant differences compared to the other fuels.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

Fossil fuel consumption provides a negative impact on the human health and environment in parallel with the decreased availability of this valuable natural resource for the future generations to use as a source of chemical energy for all applications in energy, power, and propulsion. The diesel fuel consumption in the transport sector is higher than the gasoline in most developing countries for reasons of cost and economy. Biodiesel fuel offers a good replacement for diesel fuel in compression ignition (CI) diesel engines. Earlier investigations by the authors revealed that a blend of 70% amla seed oil biodiesel and 30% eucalyptus oil (AB70EU30) is the favorable alternative renewable fuel blend that can be used as a fuel in diesel engines. With any fuel, air/fuel mixing and mixture preparation impact efficiency, emissions, and performance in CI engines. Minor adjustments in engine parameters to improve air/fuel mixing and combustion are deployable approaches to achieve good performance with alternative fuel blends in CI engines. This paper provides the role of a minor modification to engine parameters (compression ratio, injection timing, and injection pressure) on improved performance using the above mixture of binary fuel blends (AB70EU30). The results showed that the use of AB70EU30 in modified engine resulted in higher brake thermal efficiency and lower brake specific fuel consumption compared to normal diesel for improved combustion that also resulted in very low tailpipe emissions.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1845 ◽  
Author(s):  
Haifeng Liu ◽  
Xichang Wang ◽  
Diping Zhang ◽  
Fang Dong ◽  
Xinlu Liu ◽  
...  

The effects of three kinds of oxygenated fuel blends—i.e., ethanol-gasoline, n-butanol-gasoline, and 2,5-dimethylfuran (DMF)-gasoline-on fuel consumption, emissions, and acceleration performance were investigated in a passenger car with a chassis dynamometer. The engine mounted in the vehicle was a four-cylinder, four-stroke, turbocharging gasoline direct injection (GDI) engine with a displacement of 1.395 L. The test fuels include ethanol-gasoline, n-butanol-gasoline, and DMF-gasoline with four blending ratios of 20%, 50%, 75%, and 100%, and pure gasoline was also tested for comparison. The original contribution of this article is to systemically study the steady-state, transient-state, cold-start, and acceleration performance of the tested fuels under a wide range of blending ratios, especially at high blending ratios. It provides new insight and knowledge of the emission alleviation technique in terms of tailoring the biofuels in GDI turbocharged engines. The results of our works showed that operation with ethanol–gasoline, n-butanol–gasoline, and DMF–gasoline at high blending ratios could be realized in the GDI vehicle without any modification to its engine and the control system at the steady state. At steady-state operation, as compared with pure gasoline, the results indicated that blending n-butanol could reduce CO2, CO, total hydrocarbon (THC), and NOX emissions, which were also decreased by employing a higher blending ratio of n-butanol. However, a high fraction of n-butanol increased the volumetric fuel consumption, and so did the DMF–gasoline and ethanol–gasoline blends. A large fraction of DMF reduced THC emissions, but increased CO2 and NOX emissions. Blending n-butanol can improve the equivalent fuel consumption. Moreover, the particle number (PN) emissions were significantly decreased when using the high blending ratios of the three kinds of oxygenated fuels. According to the results of the New European Drive Cycle (NEDC) cycle, blending 20% of n-butanol with gasoline decreased CO2 emissions by 5.7% compared with pure gasoline and simultaneously reduced CO, THC, NOX emissions, while blending ethanol only reduced NOX emissions. PN and particulate matter (PM) emissions decreased significantly in all stages of the NEDC cycle with the oxygenated fuel blends; the highest reduction ratio in PN was 72.87% upon blending 20% ethanol at the NEDC cycle. The high proportion of n-butanol and DMF improved the acceleration performance of the vehicle.


Energy ◽  
2012 ◽  
Vol 43 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Dimitrios C. Rakopoulos ◽  
Constantine D. Rakopoulos ◽  
Evangelos G. Giakoumis ◽  
Athanasios M. Dimaratos

Infotekmesin ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 18-22
Author(s):  
Syarifudin Syarifudin ◽  
Syaiful Syaiful

Diesel engines are widely used as driving forces in vehicles and industry due to fuel efficiency and high output power. The wide use of diesel engines triggers an increase in fuel consumption and exhaust emissions that are harmful to health. Jatropha is a renewable fuel as a solution to increase fuel consumption. However, the high viscosity and low calorific value result in reduced performance and increased exhaust emissions. Butanol has a high oxygen content and cetane number and low viscosity compared to diesel and jatropha. Addition of butanol is possible to reduce the decrease in performance and exhaust emissions of diesel engines. this study evaluates the effect of butanol on reducing Isuzu 4JB1 diesel engine direct injection emissions. Percentage of blend used 70/30/0, 65/30/5, 60/30/10, and 55/40/15 based on volume. Tests are carried out at 2500 constant turns with a loading of 25% to 100% using the EGR system. The experimental results showed the presence of butanol caused a decrease in soot emissions produced by diesel engines


2021 ◽  
Vol 14 (1) ◽  
pp. 345
Author(s):  
Mostafa Kiani Deh Kiani ◽  
Sajad Rostami ◽  
Gholamhassan Najafi ◽  
Mohamed Mazlan

Contrary to energy, exergy may be destroyed due to irreversibility. Exergy analysis can be used to reveal the location, and amount of energy losses of engines. Despite the importance of the exergy analysis, there is a lack of information in this area, especially when the engine is fueled with biodiesel–diesel fuel blends under various injection operating parameters. Thus, in this research, the exergy analysis of a direct-injection diesel engine using biodiesel–diesel fuel blends was performed. The fuel blends (B0, B20, B40, and B100) were injected into cylinders at pressures of 200 and 215 bars. Moreover, the simulation of exergy and energy analyses was done by homemade code. The simulation model was verified by compression of experimental and simulation in-cylinder pressure data. The results showed there was good agreement between simulation data and experimental ones. Results indicated that the highest level of in-cylinder pressure at injection pressure of 215 bars is more than that of 200 bars. Moreover, by increasing the percentage of biodiesel, the heat transfer exergy, irreversibility, burnt fuel, and exergy indicator decreased, but the ratio of these exergy parameters (except for heat transfer exergy) to fuel exergy increased. These ratios increased from 46 to 50.54% for work transfer exergy, 16.57 to 17.97% for irreversibility, and decreased from 16 to 15.49% for heat transfer exergy. In addition, these ratios at 215 bars are higher than at 200 bars for all fuels. However, with increasing the injection pressure and biodiesel concentration in fuel blends, the exergy and energy efficiencies increased.


2015 ◽  
Vol 162 (3) ◽  
pp. 13-18
Author(s):  
Gvidonas Labeckas ◽  
Irena Kanapkienė

The article presents experimental test results of a DI single-cylinder, air-cooled diesel engine FL 511 operating with the normal (class 2) diesel fuel (DF), rapeseed oil (RO) and its 10%, 20% and 30% (v/v) blends with aviation-turbine fuel JP-8 (NATO code F-34). The purpose of the research was to analyse the effects of using various rapeseed oil and jet fuel RO90, RO80 and RO70 blends on brake specific fuel consumption, brake thermal efficiency, emissions and smoke of the exhaust. The test results of engine operation with various rapeseed oil and jet fuel blends compared with the respective parameters obtained when operating with neat rapeseed oil and those a straight diesel develops at full (100%) engine load and maximum brake torque speed of 2000 rpm. The research results showed that jet fuel added to rapeseed oil allows to decrease the value of kinematic viscosity making such blends suitable for the diesel engines. Using of rapeseed oil and jet fuel blends proved themselves as an effective measure to maintain fuel-efficient performance of a DI diesel engine. The brake specific fuel consumption decreased by about 6.1% (313.4 g/kW·h) and brake thermal efficiency increase by nearly 1.0% (0.296) compared with the respective values a fully (100%) loaded engine fuelled with pure RO at the same test conditions. The maximum NOx emission was up to 13.7% higher, but the CO emissions and smoke opacity of the exhaust 50.0% and 3.4% lower, respectively, for the engine powered with biofuel blend RO70 compared with those values produced by the combustion of neat rapeseed oil at full (100%) engine load and speed of 2000 rpm.


Sign in / Sign up

Export Citation Format

Share Document